Biomedical Microdevices

, Volume 11, Issue 2, pp 379–387

Polymer coating of paramagnetic particulates for in vivo oxygen-sensing applications

  • Edward Eteshola
  • Ramasamy P. Pandian
  • Stephen C. Lee
  • Periannan Kuppusamy
Article
  • 107 Downloads

Abstract

Crystalline lithium phthalocyanine (LiPc) can be used to sense oxygen. To enhance biocompatibility/stability of LiPc, we encapsulated LiPc in Teflon AF (TAF), cellulose acetate (CA), and polyvinyl acetate (PVAc) (TAF, previously used to encapsulate LiPc, was a comparator). We identified water-miscible solvents that don’t dissolve LiPc crystals, but are solvents for the polymers, and encapsulated crystals by solvent evaporation. Oxygen sensitivity of films was characterized in vitro and in vivo. Encapsulation did not change LiPc oximetry properties in vitro at anoxic conditions or varying partial pressures of oxygen (pO2). EPR linewidth of encapsulated particles was linear with pO2, responding to pO2 changes quickly and reproducibly for dynamic measurements. Encapsulated LiPc was unaffected by biological oxidoreductants, stable in vivo for four weeks. Oximetry, stability and biocompatibility properties of LiPc films were comparable, but both CA and PVAc films are cheaper, and easier to fabricate and handle than TAF films, making them superior.

Keywords

Oximetry Electron Paramagnetic Resonance Lithium pthalocyananine Spin probes EPR 

References

  1. C. Baudelet, B. Gallez, Magn. Reson. Imaging 22(7), 905–912 (2004)CrossRefGoogle Scholar
  2. A. Bratasz, R.P. Pandian, G. Ilangovan, P. Kuppusamy, Adv. Exp. Med. Biol. 578, 375–380 (2006) doi:10.1007/0-387-29540-2_58 CrossRefGoogle Scholar
  3. A. Bratasz, R.P. Pandian, Y. Deng, S. Petryakov, J.C. Grecula, N. Gupta, P. Kuppusamy, Magn. Reson. Med. 57(5), 950–959 (2007) doi:10.1002/mrm.21212 CrossRefGoogle Scholar
  4. M. Dinguizli, S. Jeumont, N. Beghein, J. He, T. Walczak, P.N. Lesniewski, H. Hou, O.Y. Grinberg, A. Sucheta, H.M. Swartz, B. Gallez, Biosens. Bioelectron. 21(7), 1015–1022 (2006) doi:10.1016/j.bios.2005.03.009 CrossRefGoogle Scholar
  5. E. Entcheva, H. Bien, L. Yin, C.Y. Chung, M. Farrell, Y. Kostov, Biomaterials 25(26), 5753–5762 (2004) doi:10.1016/j.biomaterials.2004.01.024 CrossRefGoogle Scholar
  6. H. Fujii, K. Itoh, R.P. Pandian, M. Sakata, P. Kuppusamy, H. Hirata, Magn. Reson. Med. Sci. 6(2), 83–89 (2007) doi:10.2463/mrms.6.83 CrossRefGoogle Scholar
  7. B. Gallez, H.M. Swartz, NMR Biomed. 17(5), 223–225 (2004) doi:10.1002/nbm.913 CrossRefGoogle Scholar
  8. B. Gallez, B.F. Jordan, C. Baudelet, Magn. Reson. Med. 42(1), 193–196 (1999) doi:10.1002/(SICI)1522-2594(199907)42:1<193::AID-MRM25>3.0.CO;2-C CrossRefGoogle Scholar
  9. O.Y. Grinberg, H. Hou, S.A. Grinberg, K.L. Moodie, E. Demidenko, B.J. Friedman, M.J. Post, H.M. Swartz, Physiol. Meas. 25(3), 659–670 (2004)CrossRefGoogle Scholar
  10. J. He, N. Beghein, P. Ceroke, R.B. Clarkson, H.M. Swartz, B. Gallez, Magn. Reson. Med. 46(3), 610–614 (2001) doi:10.1002/mrm.1234 CrossRefGoogle Scholar
  11. G. Ilangovan, J.L. Zweier, P. Kuppusamy, J. Phys. Chem. B 104(40), 9404–9410 (2000a) doi:10.1021/jp0013863 CrossRefGoogle Scholar
  12. G. Ilangovan, J.L. Zweier, P. Kuppusamy, J. Phys. Chem. B 104(17), 4047–4059 (2000b) doi:10.1021/jp9935182 CrossRefGoogle Scholar
  13. G. Ilangovan, H. Li, J.L. Zweier, P. Kuppusamy, J. Phys. Chem. B 105(22), 5323–5330 (2001) doi:10.1021/jp010130 CrossRefGoogle Scholar
  14. G. Ilangovan, A. Manivannan, H. Li, H. Yanagi, J.L. Zweier, P. Kuppusamy, Free Radic. Biol. Med. 32(2), 139–147 (2002a) doi:10.1016/S0891-5849(01)00784-5 CrossRefGoogle Scholar
  15. G. Ilangovan, R. Pal, J.L. Zweier, P. Kuppusamy, J. Phys. Chem. B 106(46), 11929–11935 (2002b) doi:10.1021/jp026360l CrossRefGoogle Scholar
  16. G. Ilangovan, A. Bratasz, H. Li, P. Schmalbrock, J.L. Zweier, P. Kuppusamy, Magn. Reson. Med. 52(3), 650–657 (2004a) doi:10.1002/mrm.20188 CrossRefGoogle Scholar
  17. G. Ilangovan, J.L. Zweier, P. Kuppusamy, J. Magn. Reson. 170(1), 42–48 (2004b) doi:10.1016/j.jmr.2004.05.018 CrossRefGoogle Scholar
  18. H. Jiang, N. Beghei, R.B. Clarkson, H.M. Swartz, B. Gallez, Phys. Med. Biol. 46(12), 33239–33239 (2001)Google Scholar
  19. R. Ke, Y. Xu, Z. Wang, S.U. Khan, Environ. Sci. Technol. 40(12), 3906–3911 (2006) doi:10.1021/es060493t CrossRefGoogle Scholar
  20. A.C. Kulkarni, P. Kuppusamy, N. Parinandi, Antioxid. Redox Signal. 9(10), 1717–1730 (2007) doi:10.1089/ars.2007.1724 CrossRefGoogle Scholar
  21. F.C. Kung, M.C. Yang, Colloids Surf. B Biointerfaces 47(1), 36–42 (2006) doi:10.1016/j.colsurfb.2005.11.019 CrossRefGoogle Scholar
  22. V.K. Kutala, N.L. Parinandi, R.P. Pandian, P. Kuppusamy, Antioxid. Redox Signal. 6(3), 597–603 (2004) doi:10.1089/152308604773934350 CrossRefGoogle Scholar
  23. V.K. Kutala, M. Khan, M.G. Angelos, P. Kuppusamy, Antioxid. Redox Signal. 9(8), 1193–1206 (2007) doi:10.1089/ars.2007.1636 CrossRefGoogle Scholar
  24. M. Lan, N. Beghein, N. Charlier, B. Gallez, Magn. Reson. Med. 51(6), 1272–1278 (2004) doi:10.1002/mrm.20077 CrossRefGoogle Scholar
  25. X.Z. Liang, Y. Zhang, C.E. Lunte, J. Pharm. Biomed. Anal. 16(7), 1143–1152 (1998) doi:10.1016/S0731-7085(97)00204-5 CrossRefGoogle Scholar
  26. K.J. Liu, P. Gast, M. Moussavi, S.W. Norby, N. Vahidi, T. Walczak, M. Wu, H.M. Swartz, Proc. Natl. Acad. Sci. USA 90(12), 5438–5442 (1993) doi:10.1073/pnas.90.12.5438 CrossRefGoogle Scholar
  27. K. Masumoto, S.-i. Takasugi, N. Hotta, K. Fujishima, Y. Iwamoto, Eur. J. Appl. Physiol. 94(1–2), 54–61 (2005)CrossRefGoogle Scholar
  28. T.C. Merkel, V. Bondar, K. Nagai, B.D. Freeman, Y.P. Yampolskii, Macromol. 32, 8427–8440 (1999) doi:10.1021/ma990685r CrossRefGoogle Scholar
  29. F. Mottu, P. Gailloud, D. Massuelle, D.A. Rufenacht, E. Doelker, Biomaterials 21(8), 803–811 (2000) doi:10.1016/S0142-9612(99)00243-4 CrossRefGoogle Scholar
  30. G.G. Novoa, J. Heinämäki, M. Sabir, A. Osmo, I.C. Antonio, S.P. Alberto, J. Yliruusi, Eur. J. Pharm. Biopharm. 59, 343–350 (2005) doi:10.1016/j.ejpb.2004.07.012 CrossRefGoogle Scholar
  31. R.P. Pandian, V.K. Kutala, N.L. Parinandi, J.L. Zweier, P. Kuppusamy, Arch. Biochem. Biophys. 420(1), 169–175 (2003a) doi:10.1016/j.abb.2003.09.008 CrossRefGoogle Scholar
  32. R.P. Pandian, N.L. Parinandi, G. Ilangovan, J.L. Zweier, P. Kuppusamy, Free Radic. Biol. Med. 35(9), 1138–1148 (2003b) doi:10.1016/S0891-5849(03)00496-9 CrossRefGoogle Scholar
  33. R.P. Pandian, V.K. Kutala, A. Liaugminas, N.L. Parinandi, P. Kuppusamy, Mol. Cell. Biochem. 278(1–2), 119–127 (2005) doi:10.1007/s11010-005-6936-x CrossRefGoogle Scholar
  34. R.P. Pandian, V. Dang, P.T. Manoharan, J.L. Zweier, P. Kuppusamy, J. Magn. Reson. 181(1), 154–161 (2006a) doi:10.1016/j.jmr.2006.04.004 CrossRefGoogle Scholar
  35. R.P. Pandian, Y. Kim, P.M. Woodward, J.M. Zweier, P.T. Manoharan, P. Kuppusamy, J. Mater. Chem. 16(36), 3609–3618 (2006b) doi:10.1039/b517976a CrossRefGoogle Scholar
  36. R.P. Pandian, M. Dolgos, V. Dang, J.Z. Sostaric, P.M. Woodward, P. Kuppusamy, Chem. Mater. 19(14), 3545–3552 (2007) doi:10.1021/cm070622k CrossRefGoogle Scholar
  37. D.L. Pole, J. Pharm. Sci. 97(3), 1071–1088 (2008) doi:10.1002/jps.21060 CrossRefGoogle Scholar
  38. J.Z. Sostaric, R.P. Pandian, L.K. Weavers, P. Kuppusamy, Chem. Mater. 18(17), 4183–4189 (2006) doi:10.1021/cm060751l CrossRefGoogle Scholar
  39. R. Springett, H.M. Swartz, Antioxid. Redox Signal. 9(8), 1295–1301 (2007) doi:10.1089/ars.2007.1620 CrossRefGoogle Scholar
  40. S. Strübing, H. Metz, K. Mäder, Eur. J. Pharm. Biopharm. 66, 13–119 (2007) doi:10.1016/j.ejpb.2006.09.007 Google Scholar
  41. H. Sugimoto, M. Mori, H. Masuda, T. Taga, J. Chem. Soc. Chem. Commun. 962–963 (1986) doi:10.1039/c39860000962
  42. H.M. Swartz, Antioxid. Redox Signal. 6(3), 677–686 (2004) doi:10.1089/152308604773934440 CrossRefGoogle Scholar
  43. D.S. Vikram, J.L. Zweier, P. Kuppusamy, Antioxid. Redox Signal. 9(10), 1745–1756 (2007) doi:10.1089/ars.2007.1717 CrossRefGoogle Scholar
  44. L. Werner, J.M. Legeais, M.D. Nagel, G. Renard, J. Biomed. Mater. Res. 46(3), 347–354 (1999) doi:10.1002/(SICI)1097-4636(19990905)46:3<347::AID-JBM6>3.0.CO;2-M CrossRefGoogle Scholar
  45. S. Wisel, S.M. Chacko, M.L. Kuppusamy, R.P. Pandian, M. Khan, V.K. Kutala, R.W. Burry, B. Sun, P. Kwiatkowski, P. Kuppusamy, Am. J. Physiol. 292(3), H1254–H1261 (2007)Google Scholar
  46. H. Zhao, J. Zhang, N. Wu, X. Zhang, K. Crowley, A.G. Weber, J. Am. Chem. Soc. 127, 15112–15119 (2005) doi:10.1021/ja052875p CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Edward Eteshola
    • 3
    • 4
  • Ramasamy P. Pandian
    • 1
    • 2
    • 4
  • Stephen C. Lee
    • 3
    • 4
  • Periannan Kuppusamy
    • 1
    • 2
    • 4
  1. 1.Center for Biomedical EPR Spectroscopy and ImagingThe Ohio State UniversityColumbusUSA
  2. 2.Department of Internal MedicineThe Ohio State UniversityColumbusUSA
  3. 3.Department of Biomedical EngineeringThe Ohio State UniversityColumbusUSA
  4. 4.Davis Heart & Lung Research InstituteThe Ohio State UniversityColumbusUSA

Personalised recommendations