Biomedical Microdevices

, Volume 11, Issue 2, pp 323–329 | Cite as

Microfluidic aqueous two phase system for leukocyte concentration from whole blood



Leukocytes from a whole blood sample were concentrated using a microfluidic aqueous two phase system (μATPS). Whole blood was simultaneously exposed to polyethylene glycol (PEG) and dextran (Dex) phase streams and cells were partitioned based on their differential affinity for the streams. The laminar flow characteristic of microfluidic devices was used to create zero, one, and two stable interfaces between the polymer streams. Three different patterns of three polymer streams each were evaluated for their effectiveness in concentrating leukocytes: immiscible PEG-PEG-Dex, immiscible Dex-PEG-Dex, and miscible PEG-PBS-Dex. The most effective configuration was the Dex-PEG-Dex stream pattern which on average increased the ratio of leukocytes to erythrocytes by a factor of 9.13 over unconcentrated blood.


Microfluidics Leukocyte Aqueous two phase separation Blood PEG Dex 



Funding for this project was provided by the NIH Carolina Center of Cancer Nanotechnology Excellence grant U54 CA119343.


  1. P. Albertsson, Nature 177, 771–774 (1956)CrossRefGoogle Scholar
  2. P. Albertsson, Partition of cell particles and macromolecules: separation and purification of biomolecules, cell organelles, membranes, and cells in aqueous polymer two-phase systems and their use in biochemical analysis and biotechnology. (Wiley, New York, 1986)Google Scholar
  3. R. Carlson, C. Gabel, S. Chan, R. Austin, J. Brody, J. Winkelman, Phys. Rev. Lett. 79, 2149–2152 (1997)CrossRefGoogle Scholar
  4. D. Gerson, Biochim. Biophys. Acta 602, 269–280 (1980)CrossRefGoogle Scholar
  5. L. Huang, E. Cox, R. Austin, J. Sturm, Science 304, 987–990 (2004)CrossRefGoogle Scholar
  6. I. Lauks, Acc. Chem. Res. 31, 317–324 (1998)CrossRefGoogle Scholar
  7. E. Levy, S. Zanki, H. Walter, Eur. J. Immunol. 11(11), 952–955 (1981)CrossRefGoogle Scholar
  8. J. Lundahl, G. Hallden, M. Hallgren, C. Skold, J. Hed, J. Immunol. Methods 180, 93–100 (1995)CrossRefGoogle Scholar
  9. P. Malstrom, A. Jonsson, H. Sjogren, Cell. Immunol. 53(1), 51–64 (1986)CrossRefGoogle Scholar
  10. R. Meagher, Y. Light, A. Singh, Lab Chip 8(4), 527–532 (2008)CrossRefGoogle Scholar
  11. J. Michalski, S. Zanki, J. Anderson, H. Walter, J. Clin. Lab. Immunol. 1, 43–48 (1986)Google Scholar
  12. K. Nam, W. Chang, H. Hong, S. Lim, D. Kim, Y. Koo, Biomed. Microdevices 7(3), 189–195 (2005)CrossRefGoogle Scholar
  13. M. Pinilla, J. de la Fuente, A. Garcia-Pirez, P. Jimeno, P. Sancho, J. Luque, J. Chromatogr. A 668(1), 165–171 (1994)CrossRefGoogle Scholar
  14. P. Sethu, M. Anahtar, L. Moldawer, R. Tompkins, M. Toner, Anal. Chem. 76(2), 6247–6253 (2004)CrossRefGoogle Scholar
  15. M. Tiirikainen, Cytometry 20(4), 341–348 (1995)CrossRefGoogle Scholar
  16. M. Toner, D. Irimia, Blood on a chip. Annu. Rev. Biomed. Eng. 7, 77–103 (2005)CrossRefGoogle Scholar
  17. H. Walter, L. Graham, E. Krob, M. Hill, Biochim. Biophys. Acta 602, 309–322 (1980a)CrossRefGoogle Scholar
  18. H. Walter, E. Krob, J. Chromatogr. 479:307–317 (1989)CrossRefGoogle Scholar
  19. H. Walter, E. Krob, D. Brooks, Biochemistry 15(14), 2959–2964 (1976)CrossRefGoogle Scholar
  20. H. Walter, E. Krob, A. Pedram, Cell Biophys. 4, 273–284 (1982)CrossRefGoogle Scholar
  21. H. Walter, C. Tamblyn, E. Levy, D. Brooks, G. Seaman, Biochim. Biophys. Acta 598, 193–199 (1980b)CrossRefGoogle Scholar
  22. H. Walter, T. Webber, J. Michalski, C. McCombs, B. Moncla, E. Krob, L. Graham, J. Immunol. 123(4), 1687–1695 (1979)Google Scholar
  23. M. Whitesides, E. Ostuni, S. Takayama, X. Jiang, D. Ingber, Annu. Rev. Biomed. Eng. 3, 335–373 (2001)CrossRefGoogle Scholar
  24. M. Yamada, V. Kasim, M. Nakashima, J. Edahiro, M. Seki, Biotechnol. Bioeng. 88(4), 489–494 (2004a)CrossRefGoogle Scholar
  25. M. Yamada, M. Nakashima, M. Seki, Annu. Rev. Biomed. Eng. 76(18), 5465–5471 (2004b)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.The Joint Department of Biomedical EngineeringNorth Carolina State University and the University of North Carolina at Chapel HillRaleighUSA

Personalised recommendations