Biomedical Microdevices

, Volume 11, Issue 1, pp 287–296 | Cite as

The targeting of endothelial progenitor cells to a specific location within a microfluidic channel using magnetic nanoparticles

  • Jeong Ah Kim
  • Hong Jai Lee
  • Hyun-Jae Kang
  • Tai Hyun Park


A common problem with the in vivo therapeutic applications of cells is that cells can rapidly disappear into the circulatory system after an injection. Magnetic nanoparticles can be used to solve this problem. Bacterial magnetic nanoparticles were used in this study for targeting stem cells at a specific location within a microfluidic channel. Magnetic nanoparticles were isolated from Magnetospirillum sp. AMB-1 and delivered to endothelial progenitor cells (EPCs). Cellular uptake of magnetic nanoparticles and their functional feasibility was characterized in vitro. The environment of a human blood vessel was simulated using a microfluidic channel. Magnetic nanoparticle-incorporated EPCs were injected into a microchannel and the flow rate of cells was uniformly controlled by use of a syringe pump. EPCs were effectively targeted to a specific location within the microchannel by an external magnetic field (about 400 mT). About 40% of EPCs were efficiently targeted with a flow rate of 5 μl min−1 when 10 μg of magnetic nanoparticles were used per 104 cells. This microfluidic system provides a useful tool towards a better understanding of the behavior of magnetic nanoparticle-incorporated cells within the human circulatory system for clinical use.


Magnetic nanoparticle Endothelial progenitor cell Microfluidic system Circulatory system 



This work was supported by a grant from the Innovative Research Institute for Cell Therapy (No. A06-2260-B81505-06N1-15010A). J. A. Kim acknowledges the Seoul Science Fellowship supported by Seoul Metropolitan Government.


  1. T. Asahara, T. Murohara, A. Sullivan, M. Silver, R. van der Zee, T. Li, B. Witzenbichler, G. Schatteman, J.M. Isner, Science 275, 964–967 (1997)CrossRefGoogle Scholar
  2. J.W. Bulte, M.D. Cuyper, D. Despres, J.A. Frank, J. Magn. Reson. Imaging 9, 329–335 (1999)CrossRefGoogle Scholar
  3. D. Choi, Biotechnol. Bioprocess Eng. 12, 39–42 (2007)CrossRefGoogle Scholar
  4. Y.-C. Chung, I.-H. Chen, C.-J. Chen, Biomaterials 29, 1807–1816 (2008)CrossRefGoogle Scholar
  5. R.B. Frankel, D.A. Bazylinski, ed. by C.M. Niemeyer, C.A. Mirkin. Nanobiotechnology (Wiley-VCH, Weinheim, 2004), p. 136CrossRefGoogle Scholar
  6. S. Goodwin, C. Peterson, C. Hoh, C. Bittner, J. Magn, Magn. Mater. 194, 132–139 (1999)CrossRefGoogle Scholar
  7. Y.A. Gorby, T.J. Beveridge, R.P. Blakemore, J. Bacteriol. 170, 843–841 (1988)Google Scholar
  8. R. Gulati, D. Jevremovic, T.E. Peterson, S. Chatterjee, V. Shah, R.G. Vile, R.D. Simari, Circ. Res. 93, 1023–1025 (2003)CrossRefGoogle Scholar
  9. A.K. Gupta, M. Gupta, Biomaterials 26, 1565–1573 (2005)CrossRefGoogle Scholar
  10. M. Hristov, W. Erl, P.C. Weber, Trends Cardiovasc. Med. 13, 201–206 (2003)CrossRefGoogle Scholar
  11. J. Hur, C.H. Yoon, H.S. Kim, J.H. Choi, H.J. Kang, K.K. Hwang, B.H. Oh, M.M. Lee, Y.B. Park, Arterioscler Thromb. Vasc. Biol. 24, 288–293 (2004)CrossRefGoogle Scholar
  12. A. Jordan, P. Wust, R. Scholz, B. Tesch, H. Fähling, T. Mitrovics, T. Vogl, J. Cervos-Navarro, R. Felix, Int. J. Hyperthermia 12, 705–722 (1996)CrossRefGoogle Scholar
  13. R. Jurgons, C. Seliger, A. Hilpert, L. Trahm, S. Odenbach, C. Alexio, J. Phys.: Condens. Matter 18, S2893–S2902 (2006)CrossRefGoogle Scholar
  14. C. Kalka, H. Masuda, T. Takahashi, W.M. Kalka-Moll, M. Silver, M. Kearney, T. Li, J.M. Isner, T. Asahara, Proc. Natl. Acad. Sci. USA 97, 3422–3427 (2000)CrossRefGoogle Scholar
  15. H.J. Kang, H.S. Kim, Y.B. Park, Can. Med. Assoc. J. 171, 442–443 (2004)CrossRefGoogle Scholar
  16. A. Kawamoto, H.C. Gwon, H. Iwaguro, J.I. Yamaguchi, S. Uchida, H. Masuda, M. Silver, H. Ma, M. Kearney, J.M. Isner, T. Asahara, Circulation 103, 634–637 (2001)Google Scholar
  17. A. Kawamoto, T. Tkebuchava, J.I. Yamaguchi, H. Nishimura, Y.S. Yoon, C. Milliken, S. Uchida, O. Masuo, H. Iwaguro, H. Ma, A. Hanley, M. Silver, M. Kearney, D.W. Losordo, J.M. Isner, T. Asahara, Circulation 107, 461–468 (2003)CrossRefGoogle Scholar
  18. J.A. Kim, J.Y. Lee, S. Seong, S.H. Cha, S.H. Lee, J.J. Kim, T.H. Park, Biochem. Eng. J. 29, 91–97 (2006a)CrossRefGoogle Scholar
  19. Y.S. Kim, B.C. Kim, J.H. Lee, J. Kim, M.B. Gu, Biotechnol. Bioprocess Eng. 11, 449–254 (2006b)CrossRefGoogle Scholar
  20. J.A. Kim, K. Cho, Y.S. Shin, N. Jung, C. Chung, J.K. Chang, Biosens. Bioelectron. 22, 3273–3277 (2007)CrossRefGoogle Scholar
  21. A. Komeili, L. Zhuo, D.K. Newman, G.J. Jensen, Science 311, 242–245 (2006)CrossRefGoogle Scholar
  22. R.E. Kopp, J.L. Kirschvink, Earth-Sci. Rev. 86, 42–61 (2008)CrossRefGoogle Scholar
  23. A. Krichevsky, M.J. Smith, L.J. Whitman, M.B. Johnson, T.W. Clinton, L.L. Perry, B.M. Applegate, K. O’Connor, L.N. Csonka, J. Appl. Phys. 101, 014701–6 (2007)CrossRefGoogle Scholar
  24. T. Kubo, T. Sugita, S. Shimose, Y. Nitta, Y. Ikuta, T. Murakami, Int. J. Oncol. 17, 309–315 (2000)Google Scholar
  25. D. Lyden, K. Hattori, S. Dias, C. Costa, P. Blaikie, L. Butros, A. Chadburn, B. Heissing, W. Marks, L. Witte, Y. Wu, D. Hicklin, Z. Zhu, N.R. Hackett, R.D. Crystal, M.A.S. Moore, K.A. Hajjar, K. Manova, R. Benezra, S. Rafii, Nature Med. 7, 1194–1201 (2001)CrossRefGoogle Scholar
  26. N. Nakamura, K. Hashimoto, T. Matsunaga, Anal. Chem. 63, 268–272 (1999)CrossRefGoogle Scholar
  27. Q.A. Pankhurst, J. Connolly, S.K. Jones, J. Dobson, J. Phys. D: Appl. Phys. 36, R167–R18 (2003)CrossRefGoogle Scholar
  28. T.H. Park, M.L. Shuler, Biotechnol. Prog. 19, 43–253 (2003)CrossRefGoogle Scholar
  29. M.K. Patterson Jr., Methods Enzymol. 58, 141–152 (1979)CrossRefGoogle Scholar
  30. T.R. Pisanic II, J.D. Blackwell, V.I. Shubayev, R.R. Fiñones, S. Jin, Biomaterials 28, 2572–2581 (2007)CrossRefGoogle Scholar
  31. J.A. Ritter, A.D. Ebner, K.D. Daniel, K.L. Stewart, J. Magn, Magn. Mater. 280, 184–201 (2004)CrossRefGoogle Scholar
  32. M. Sakakibara, S. Goto, K. Eto, N. Tamura, T. Isshiki, S. Handa, Arterioscler Thromb.Vasc.Biol. 22, 1360–1364 (2002)CrossRefGoogle Scholar
  33. S. Seong, T.H. Park, Biotechnol. Bioeng. 76, 11–16 (2001)CrossRefGoogle Scholar
  34. J.W. Song, W. Gu, N. Futai, K. Warner, J.E. Nor, S. Takayama, Anal. Chem. 77, 3993–3999 (2005)CrossRefGoogle Scholar
  35. D.D. Stark, R. Weissleder, G. Elizondo, P.F. Hahn, S. Saini, L.E. Todd, J. Wittenberg, J.T. Ferrucci, Radiology 168, 297–301 (1988)Google Scholar
  36. C.H. Stechell, J. Chem. Technol. Biotechnol. 35B, 175–182 (1985)CrossRefGoogle Scholar
  37. S. Takeda, F. Mishima, S. Fujimoto, Y. Izumi, S. Nishijima, J. Magn, Magn. Mater. 311, 367–371 (2007)CrossRefGoogle Scholar
  38. S. Usami, H.H. Chen, Y. Zhao, S. Chien, R. Skalak, Ann. Biomed. Eng. 21, 77–83 (1993)CrossRefGoogle Scholar
  39. S. Verma, M.A. Kuliszewski, S.H. Li, P.E. Szmitk, L. Zucco, C.H. Wang, M.V. Badiwala, D.A.G. Mickle, R.D. Weisel, P.W.M. Fedak, D.J. Swewart, M.J.B. Kutryk, Circulation 109, 2058–2067 (2004)CrossRefGoogle Scholar
  40. B.P. Weiss, S.S. Kim, J.L. Kirschvink, R.E. Kopp, M. Sankaran, A. Kobayashi, A. Komeili, Earth Planet. Sci. Lett. 224, 73–89 (2004)CrossRefGoogle Scholar
  41. C. Wilhelm, F. Gazeau, J.C. Bacri, Eur. Biophy. J. 31, 118–125 (2002)CrossRefGoogle Scholar
  42. C. Wilhelm, L. Bal, P. Smirnov, I. Galy-Fauroux, O. Clement, F. Gazeau, J. Emmerich, Biomaterials 28, 3797–3806 (2007)CrossRefGoogle Scholar
  43. C.H. Yoon, J. Hur, K.W. Park, J.H. Kim, C.S. Lee, I.Y. Oh, T.Y. Kim, H.J. Cho, H.J. Kang, I.H. Chae, H.K. Yang, B.H. Oh, Y.B. Park, H.S. Kim, Circulation 112, 1618–1627 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Jeong Ah Kim
    • 1
  • Hong Jai Lee
    • 1
  • Hyun-Jae Kang
    • 2
  • Tai Hyun Park
    • 1
  1. 1.School of Chemical and Biological Engineering, Institute of BioengineeringSeoul National UniversitySeoulSouth Korea
  2. 2.Department of Internal MedicineSeoul National University, College of MedicineSeoulSouth Korea

Personalised recommendations