Biomedical Microdevices

, 11:151 | Cite as

On-chip testing device for electrochemotherapeutic effects on human breast cells

  • Youn-Suk Choi
  • Hong-Bae Kim
  • Gil-Sik Kwon
  • Je-Kyun Park


A microfabricated cell-based testing device for electrochemotherapy (ECT) has been developed by miniaturizing the widely used clinical electroporator with a two-needle array into two-dimensional planar electrodes while keeping the similarity of the electric field strength distribution. In this device, all the biological processes from cell culture to electroporation and final cell-based assays were carried out on a chip using a conventional 2D cell culture method, and the multiple electrochemotherapeutic assays could be realized by exploiting the six electroporation sites in a single device. With the proposed platform, the electroporation rate was evaluated with propidium iodide and cell proliferation after 48 h of electrochemotherapy with bleomycin was determined with T47D human breast ductal carcinoma cell line in various electric field strengths and drug concentrations. This microsystem has several advantages over conventional cuvette type electroporation assay, such as multiple assays on a chip, on-chip based operation from cell culture to final assay, and having similar electric field distribution as that of the clinical electroporator. As the clinical trials of electrochemotherapy are being carried out, this new platform is expected to have valuable applications in basic in vitro ECT studies, drug discovery, and development of clinical ECT equipment.


Electrochemotherapy Electroporation Bleomycin Breast cancer cell Cancer therapy 



This research was supported by the Korea Science and Engineering Foundation (KOSEF) NRL Program grant funded by the Korea government (MEST) (R0A-2008-000-20109-0), and by the Industrial Technology Development Program grant (10017755) of the Korea government (MKE). The authors also thank the CHUNG Moon Soul Center for BioInformation and BioElectronics, KAIST.


  1. C.M. Byrne, J.F. Thompson, H. Johnston, P. Hersey, M.J. Quinn, T.M. Hughes et al., Melanoma Res. 15, 45 (2005) doi: 10.1097/00008390-200502000-00008 CrossRefGoogle Scholar
  2. M. Čemažar, D. Miklavčič, G. Serša, Jpn. J. Cancer Res 89, 328 (1998)Google Scholar
  3. S.B. Dev, D.P. Rabussay, G. Widera, G.A. Hofmann, IEEE Trans. Plasma Sci 28, 206 (2000) doi: 10.1109/27.842905 CrossRefGoogle Scholar
  4. Z. Fei, S. Wang, Y. Xie, B.E. Henslee, C.G. Koh, L.J. Lee, Anal. Chem 79, 5719 (2007) doi: 10.1021/ac070482y CrossRefGoogle Scholar
  5. M.B. Fox, D.C. Esveld, A. Valero, R. Luttge, H.C. Mastwijk, P.V. Bartels et al., Anal. Bioanal. Chem 385, 474 (2006) doi: 10.1007/s00216-006-0327-3 CrossRefGoogle Scholar
  6. J. Gehl, T. Skovsgaard, L.M. Mir, Anticancer Drugs 9, 319 (1998) doi: 10.1097/00001813-199804000-00005 CrossRefGoogle Scholar
  7. J. Gehl, Acta Physiol. Scand. 177, 437 (2003) doi: 10.1046/j.1365-201X.2003.01093.x CrossRefGoogle Scholar
  8. A. Gothelf, L.M. Mir, J. Gehl, Cancer Treat. Rev. 29, 371 (2003) doi: 10.1016/S0305-7372(03)00073-2 CrossRefGoogle Scholar
  9. T. Heida, J.B.M. Wagenaar, W.L.C. Rutten, E. Marani, IEEE Trans. Biomed. Eng. 49, 1195 (2002) doi: 10.1109/TBME.2002.803503 CrossRefGoogle Scholar
  10. R. Heller, M. Jaroszeski, R. Perrott, J. Messina, R. Gilbert, Melanoma Res. 7, 10 (1997) doi: 10.1097/00008390-199702000-00003 CrossRefGoogle Scholar
  11. G.A. Hofmann, S.B. Dev, S. Dimmer, G.S. Nanda, IEEE Trans. Biomed. Eng. 46, 752 (1999) doi: 10.1109/10.764952 CrossRefGoogle Scholar
  12. C. Holzapfel, J. Vienken, U. Zimmermann, J. Membr. Biol. 67, 13 (1982) doi: 10.1007/BF01868644 CrossRefGoogle Scholar
  13. Y. Huang, B. Rubinsky, Sens. Actuators A Phys. 104, 205 (2003) doi: 10.1016/S0924-4247(03)00050-5 CrossRefGoogle Scholar
  14. K.-S. Huang, Y.-C. Lin, C.-C. Su, C.-S. Fang, Lab Chip 7, 86 (2007) doi: 10.1039/b613753a CrossRefGoogle Scholar
  15. M.J. Jaroszeski, V. Dang, C. Pottinger, J. Hickey, R. Gilbert, R. Heller, Anticancer Drugs 11, 201 (2000) doi: 10.1097/00001813-200003000-00008 CrossRefGoogle Scholar
  16. M. Khine, A. Lau, C. Ionescu-Zanetti, J. Seo, L.P. Lee, Lab Chip 5, 38 (2005) doi: 10.1039/b408352k CrossRefGoogle Scholar
  17. M. Khine, C. Ionescu-Zanetti, A. Blatz, L.-P. Wang, L.P. Lee, Lab Chip 7, 457 (2007) doi: 10.1039/b614356c CrossRefGoogle Scholar
  18. J.A. Kim, K. Cho, Y.S. Shin, N. Jung, C. Chung, J.K. Chang, Biosens. Bioelectron. 22, 3273 (2007a) doi: 10.1016/j.bios.2007.02.009 CrossRefGoogle Scholar
  19. J.A. Kim, K. Cho, M.S. Shin, W.G. Lee, N. Jung, C. Chung et al., Biosens. Bioelectron. 23, 1353 (2008) doi: 10.1016/j.bios.2007.12.009 CrossRefGoogle Scholar
  20. S.K. Kim, J.H. Kim, K.P. Kim, T.D. Chung, Anal. Chem. 79, 7761 (2007b) doi: 10.1021/ac071197h CrossRefGoogle Scholar
  21. W. Krassowska, G.S. Nanda, M.B. Austin, S.B. Dev, D.P. Rabussay, Ann. Biomed. Eng. 31, 80 (2003) doi: 10.1114/1.1531634 CrossRefGoogle Scholar
  22. O. Kurosawa, H. Oana, S. Matsuoka, A. Noma, H. Kotera, M. Washizu, Meas. Sci. Technol. 17, 3127 (2006) doi: 10.1088/0957-0233/17/12/S02 CrossRefGoogle Scholar
  23. M. Marty, G. Sersa, J.R. Garbay, J. Gehl, C.G. Collins, M. Snoj et al., Eur. J. Cancer 4(Suppl.), 3 (2006)Google Scholar
  24. L.M. Mir, H. Banoun, C. Paoletti, Exp. Cell Res. 175, 15 (1988) doi: 10.1016/0014-4827(88)90251-0 CrossRefGoogle Scholar
  25. K. Nakajima, H. Hisazumi, Urol. Res. 11, 43 (1983) doi: 10.1007/BF00272709 CrossRefGoogle Scholar
  26. M. Okino, H. Mohri, Jpn. J. Cancer Res. 78, 1319 (1987)Google Scholar
  27. M. Okino, H. Tomie, H. Kanesada, M. Marumoto, K. Esato, H. Suzuki, Jpn. J. Cancer Res. 83, 1095 (1992)Google Scholar
  28. B. Poddevin, S. Orlowski, J. Belehradek Jr., L.M. Mir, Biochem. Pharmacol. 42, S67 (1991)CrossRefGoogle Scholar
  29. G.J. Prud’homme, Y. Glinka, A.S. Khan, R. Draghia-Akli, Current Gene Therapy 6, 243 (2006)CrossRefGoogle Scholar
  30. L.H. Ramirez, S. Orlowski, D. An, G. Bindoula, R. Dzodic, P. Ardouin, C. Bognel, J. Belehradek Jr., J.N. Munck, L.M. Mir, Br. J. Cancer 77, 2104 (1998)Google Scholar
  31. F. Ryttsén, C. Farre, C. Brennan, S.G. Weber, K. Nolkrantz, K. Jardemark, D.T. Chiu, O. Orwar, Biophys. J. 79, 1993 (2000)CrossRefGoogle Scholar
  32. G. Serša, M. Čemažar, D. Miklavčič, Cancer Res. 55, 3450 (1995)Google Scholar
  33. G. Serša, B. Štabuc, M. Čemažar, B. Jančar, D. Miklavčič, Z. Rudolf, Eur. J. Cancer 34, 1213 (1998)CrossRefGoogle Scholar
  34. G. Serša, D. Miklavčič, M. Čemažar, Z. Rudolf, G. Pucihar, M. Snoj, EJSO 34, 232 (2008)Google Scholar
  35. H.-Y. Wang, C. Lu, Anal. Chem. 78, 5158 (2006)CrossRefGoogle Scholar
  36. J.C. Weaver, IEEE Trans. Dielectr. Electr. Insul. 10, 754 (2003)CrossRefMathSciNetGoogle Scholar
  37. Q. Zheng, D.C. Chang, Biochim. Biophys. Acta 1088, 104 (1991)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Youn-Suk Choi
    • 1
    • 2
  • Hong-Bae Kim
    • 3
  • Gil-Sik Kwon
    • 2
  • Je-Kyun Park
    • 1
  1. 1.Department of Bio and Brain Engineering, KAISTDaejeonRepublic of Korea
  2. 2.Kyungwon TechSungnamRepublic of Korea
  3. 3.Solco Biomedical Co.PyeongtaekRepublic of Korea

Personalised recommendations