Biomedical Microdevices

, Volume 11, Issue 1, pp 135–142 | Cite as

Capture and alignment of phi29 viral particles in sub-40 nanometer porous alumina membranes

  • Jeong-Mi Moon
  • Demir Akin
  • Yi Xuan
  • Peide D. Ye
  • Peixuan Guo
  • Rashid BashirEmail author


Bacteriophage phi29 virus nanoparticles and its associated DNA packaging nanomotor can provide for novel possibilities towards the development of hybrid bio-nano structures. Towards the goal of interfacing the phi29 viruses and nanomotors with artificial micro and nanostructures, we fabricated nanoporous Anodic Aluminum Oxide (AAO) membranes with pore size of 70 nm and shrunk the pores to sub 40 nm diameter using atomic layer deposition (ALD) of Aluminum Oxide. We were able to capture and align particles in the anodized nanopores using two methods. Firstly, a functionalization and polishing process to chemically attach the particles in the inner surface of the pores was developed. Secondly, centrifugation of the particles was utilized to align them in the pores of the nanoporous membranes. In addition, when a mixture of empty capsids and packaged particles was centrifuged at specific speeds, it was found that the empty capsids deform and pass through 40 nm diameter pores whereas the particles packaged with DNA were mainly retained at the top surface of the nanoporous membranes. Fluorescence microscopy was used to verify the selective filtration of empty capsids through the nanoporous membranes.


phi29 Nanoporous membrane Atomic layer deposition Alignment Capture 



We acknowledge the funding from the National Institutes of Health through the NIH Roadmap for Medical Research (PN2 EY 018230 Nanomedicine Development Center), and NIH R21 EB007474 FE-SEM images were taken at the Birck Nanotechnology Center Microscopy Facility. We also thank Dr. D. Sherman for the TEM micrographs.


  1. D. Akin, H. Li, R. Bashir, Nano Lett 4, 257 (2004), doi: 10.1021/nl034987p CrossRefGoogle Scholar
  2. C. Carrasco, A. Carreira, I.A.T. Schaap, P.A. Serena, J. Gomez-Herrero, M.G. Mateu et al., Proc. Natl. Acad. Sci. U S A 103, 13706 (2006), doi: 10.1073/pnas.0601881103 CrossRefGoogle Scholar
  3. C. Chen, P. Guo, J. Virol 71, 495 (1997)Google Scholar
  4. C. Chen, C. Zhang, P. Guo, RNA 5, 805 (1999), doi: 10.1017/S1355838299990350 CrossRefGoogle Scholar
  5. K.-Y. Chun, P. Stroeve, Langmuir 18, 4653 (2002), doi: 10.1021/la011250b CrossRefGoogle Scholar
  6. S. Fernandez-Lopez, H.-S. Kim, E.C. Choi, M. Delgado, J.R. Granja, A. Khasanov et al., Nature 412, 452 (2001), doi: 10.1038/35086601 CrossRefGoogle Scholar
  7. P. Guo, S. Erickson, D. Anderson, Science 236, 690 (1987), doi: 10.1126/science.3107124 CrossRefGoogle Scholar
  8. P. Guo, B. Rajogopal, D. Anderson, S. Erickson, C.-S. Lee, Virology 185, 395 (1991), doi: 10.1016/0042-6822(91)90787-C CrossRefGoogle Scholar
  9. P. Guo, C. Zhang, C. Chen, K. Garver, M. Trottier, Mol. Cell 2, 149 (1998), doi: 10.1016/S1097-2765(00)80124-0 CrossRefGoogle Scholar
  10. K.B. Jirage, J.C. Hulteen, C.R. Martin, Anal. Chem 71, 491 (1999), doi: 10.1021/ac990615i CrossRefGoogle Scholar
  11. W.S. Klug, M.T. Feldmann, M. Ortiz, Comput. Mech 35, 146 (2005), doi: 10.1007/s00466-004-0613-x zbMATHCrossRefGoogle Scholar
  12. B.B. Lakshmi, C.R. Martin, Nature 388, 758 (1997), doi: 10.1038/41978 CrossRefGoogle Scholar
  13. C.-S. Lee, P. Guo, J. Virol 69, 5018 (1995)Google Scholar
  14. S.B. Lee, C.R. Martin, Chem. Mater 13, 3236 (2001), doi: 10.1021/cm0101071 CrossRefGoogle Scholar
  15. S.B. Lee, D.T. Mitchell, L. Trofin, T.K. Nevanen, H. Söderlund, C.R. Martin, Science 296, 2198 (2002), doi: 10.1126/science.1071396 CrossRefGoogle Scholar
  16. V. Miikkulainen, T. Rasilainen, E. Puukilainen, M. Suvanto, T.A. Pakkanen, Langmuir 24, 4473 (2008), doi: 10.1021/la800285s CrossRefGoogle Scholar
  17. J.-M. Moon, A. Wei, J. Phys. Chem. B 109, 23336 (2005), doi: 10.1021/jp054405n CrossRefGoogle Scholar
  18. M. Otaki, K. Yano, S. Ohgaki, Water Sci. Technol 37, 107 (1998), doi: 10.1016/S0273-1223(98)00300-X CrossRefGoogle Scholar
  19. D. Shu, P. Guo, Virology 309, 108 (2003a), doi: 10.1016/S0042-6822(03)00011-4 CrossRefGoogle Scholar
  20. D. Shu, P. Guo, J. Biol. Chem 278, 7119 (2003b), doi: 10.1074/jbc.M209895200 CrossRefGoogle Scholar
  21. D.E. Smith, S.J. Tans, S.B. Smith, S. Grimes, D.L. Anderson, C. Bustamante, Nature 413, 748 (2001), doi: 10.1038/35099581 CrossRefGoogle Scholar
  22. Y. Tao, N.H. Olson, W. Xu, D.L. Anderson, M.G. Rossmann, T.S. Baker, Cell 95, 431 (1998), doi: 10.1016/S0092-8674(00)81773-0 CrossRefGoogle Scholar
  23. T. Urase, K. Yamamoto, S. Ohgaki, J. Membr. Sci 115, 21 (1996), doi: 10.1016/0376-7388(95)00269-3 CrossRefGoogle Scholar
  24. R. van Reis, A. Zydney, Curr. Opin. Biotechnol 12, 208 (2001), doi: 10.1016/S0958-1669(00)00201-9 CrossRefGoogle Scholar
  25. E.M. van Voorthuizen, N.J. Ashbolt, A.I. Schäfer, . J. Membr. Sci 194, 69 (2001), doi: 10.1016/S0376-7388(01)00522-1 CrossRefGoogle Scholar
  26. G. Xiong, J.W. Elam, H. Feng, C.Y. Han, H.-H. Wang, L.E. Iton et al., J. Phys. Chem. B 109, 14059 (2005), doi: 10.1021/jp0503415 CrossRefGoogle Scholar
  27. Y. Xu, K.K. Sirkar, X.-P. Dai, R.G. Luo, . Biotechnol. Prog 21, 590 (2005), doi: 10.1021/bp049801m CrossRefGoogle Scholar
  28. S.Y. Yang, I. Ryu, H.Y. Kim, J.K. Kim, S.K. Jang, T.P. Russell, . Adv. Mater 18, 709 (2006), doi: 10.1002/adma.200501500 CrossRefGoogle Scholar
  29. F. Zhang, S. Lemieux, X. Wu, D. St.-Arnaud, C.T. McMurray, F. Major et al., Mol. Cell 2, 141 (1998), doi: 10.1016/S1097-2765(00)80123-9 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Jeong-Mi Moon
    • 1
    • 2
  • Demir Akin
    • 3
    • 4
  • Yi Xuan
    • 1
  • Peide D. Ye
    • 1
  • Peixuan Guo
    • 5
  • Rashid Bashir
    • 6
    Email author
  1. 1.Birck Nanotechnology Center, School of Electrical and Computer EngineeringPurdue UniversityWest LafayetteUSA
  2. 2.Micro and Nanotechnology Laboratory, Department of Electrical and Computer EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  3. 3.Birck Nanotechnology Center, Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteUSA
  4. 4.Center for Cancer Nanotechnology ExcellenceStanford University School of MedicineStanfordUSA
  5. 5.School of Biomedical EngineeringUniversity of CincinnatiCincinnatiUSA
  6. 6.Micro and Nanotechnology Laboratory, Department of Electrical and Computer Engineering and BioengineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations