Biomedical Microdevices

, Volume 11, Issue 1, pp 129–133 | Cite as

Ice-lithographic fabrication of concave microwells and a microfluidic network



We describe a novel method to produce concave microwells utilizing solid–liquid phase change. This method, named ‘ice-lithography’, does not require any lithographic processes and consists of a few simple steps that yield multiple concave microwells. We demonstrated that the shape and size of the microwells can be controlled by varying substrates and vapor-collection time. Patterned wells with sizes in the range of 10μm to several millimeters in diameter could be produced. Additionally, we fabricated a uniformly aligned concave microwell pattern and a microfluidic network. Ice-lithography has potential biological and biomedical applications in areas such as the fabrication of cell docking devices and microbioreactors as well as the formation of uniformly sized embryoid bodies.


Ice lithography Concave microwell PDMS 3D microstructure Water mold 



This study was supported by the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea government (MOST) (No. R0A-2007-000-20086-0) and a grant from the Korea Health 21 R&D Project, Ministry of Health & Welfare, Republic of Korea (0405-ER01-0304-0001).

Supplementary material

10544_2008_9216_MOESM1_ESM.doc (986 kb)
ESM 1 (DOC 986 KB)


  1. S.H. Chao, R. Carlson, D.R. Meldrum, Lab Chip 7(5), 641–643 (2007) doi: 10.1039/b618269k CrossRefGoogle Scholar
  2. U.B. Giang, D. Lee, M.R. King, L.A. Delouise, Lab Chip 7(12), 1660–1662 (2007) doi: 10.1039/b714742b CrossRefGoogle Scholar
  3. A. Grimes, D.N. Breslauer, M. Long, J. Pegan, L.P. Lee, M. Khine, Lab Chip 8(1), 170–172 (2008) doi: 10.1039/b711622e CrossRefGoogle Scholar
  4. D. Janasek, J. Franzke, A. Manz, Nature 442(7101), 374–380 (2006) doi: 10.1038/nature05059 CrossRefGoogle Scholar
  5. A. Khademhosseini, R. Langer, J. Borenstein, J.P. Vacanti, Proc. Natl. Acad. Sci. USA 103(8), 2480–2487 (2006) doi: 10.1073/pnas.0507681102 CrossRefGoogle Scholar
  6. C. Khoury, G.A. Mensing, D.J. Beebe, Lab Chip 2(1), 50–55 (2002) doi: 10.1039/b109344d CrossRefGoogle Scholar
  7. M.C. Park, J.Y. Hur, K.W. Kwon, S.H. Park, K.Y. Suh, Lab Chip 6(8), 988–994 (2006) doi: 10.1039/b602961b CrossRefGoogle Scholar
  8. S.R. Quake, A. Scherer, Science 290(5496), 1536–1540 (2000) doi: 10.1126/science.290.5496.1536 CrossRefGoogle Scholar
  9. G.M. Whitesides, Nature 442(7101), 368–373 (2006) doi: 10.1038/nature05058 CrossRefGoogle Scholar
  10. Y.N. Xia, G.M. Whitesides, Annu. Rev. Mater. Sci. 28, 153–184 (1998a)CrossRefGoogle Scholar
  11. Y.N. Xia, G.M. Whitesides, Angew. Chem. Int. Ed. 37(5), 551–575 (1998b) doi: 10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Joong Yull Park
    • 1
  • Chang Mo Hwang
    • 1
    • 2
  • Sang-Hoon Lee
    • 1
  1. 1.Department of Biomedical EngineeringCollege of Health Science, Korea UniversitySeoulRepublic of Korea
  2. 2.Korea Artificial Organ CenterKorea UniversitySeoulRepublic of Korea

Personalised recommendations