Biomedical Microdevices

, Volume 11, Issue 1, pp 103–115 | Cite as

Biomimetic hydrogels for biosensor implant biocompatibility: electrochemical characterization using micro-disc electrode arrays (MDEAs)

  • Gusphyl Justin
  • Stephen Finley
  • Abdur Rub Abdur Rahman
  • Anthony Guiseppi-Elie


Our interest is in the development of engineered microdevices for continuous remote monitoring of intramuscular lactate, glucose, pH and temperature during post-traumatic hemorrhaging. Two important design considerations in the development of such devices for in vivo diagnostics are discussed; the utility of micro-disc electrode arrays (MDEAs) for electrochemical biosensing and the application of biomimetic, bioactive poly(HEMA)-based hydrogel composites for implant biocompatibility. A poly(HEMA)-based hydrogel membrane containing polyethylene glycol (PEG) was UV cross-linked with tetraethyleneglycol diacrylate following application to MDEAs (50 μm discs) and to 250 μm diameter gold electrodes within 8-well culture ware. Cyclic voltammetry (CV) of the MDEAs revealed a reduction in the apparent diffusion coefficient of ferrocenemonocarboxylic acid (FcCO2H), from 6.68 × 10−5 to 6.74 × 10−6 cm2/s for the uncoated and 6 μm thick hydrogel coated devices, respectively. Single frequency (4 kHz) temporal impedance measurements of the hydrogels in the 8-well culture ware showed a reversible 5% change in the absolute impedance of the hydrogels when exposed to a pH change between 6.1 to 7.2 and a 20% drop between pH 6.1 and 8.8.


Biotransducers Implantable biosensors Integrated circuits Arrays Electroanalysis 



This work was supported by the US Department of Defense (DoDPRMRP) grant PR023081/DAMD17-03-1-0172 and by the Consortium of the Clemson University Center for Bioelectronics, Biosensors and Biochips (C3B).


  1. Abdur Rub Abdur Rahman, Gusphyl Justin and Anthony Guiseppi-Elie “Towards an Implantable Biochip for Glucose and Lactate Monitoring using Micro-Disc Electrode Arrays (MDEAs)” “Biomedical Microdevices: BioMEMS and Biomedical NanoTechnology” (this journal)Google Scholar
  2. S. Abraham, S. Brahim, K. Ishihara, A. Guiseppi-Elie, Molecularly engineered p(HEMA)-based hydrogels for implant biochip biocompatibility Biomaterials 26, 4767–4778 (2005). doi: 10.1016/j.biomaterials.2005.01.031 CrossRefGoogle Scholar
  3. A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd edn. (John Wiley and Sons, Inc., Hoboken, 2001)Google Scholar
  4. U. Bhardwaj, R. Sura, F. Papadimitrakopoulos, D.J. Burgess, Controlling acute inflammation with fast releasing dexamethasone-PLGA microsphere/PVA hydrogel composites for implantable devices J. Diabetes Sci. Technol. 1, 8–17 (2007)Google Scholar
  5. R. Compton, A. Fisher, R.G. Wellington, P.J. Dobson, P.A. Leigh, Hydrodynamic voltammetry with microelectrodes. cannel microband electrodes: theory and experiment J. Phys. Chem 97, 10410–10415 (1993). doi: 10.1021/j100142a024 CrossRefGoogle Scholar
  6. T. Davies, R. Compton, The cyclic and linear sweep voltammetry of regular and random arrays of microdisc electrodes: Theory J. Electroanal. Chem 585, 63–82 (2005). doi: 10.1016/j.jelechem.2005.07.022 CrossRefGoogle Scholar
  7. T. Davies, S. Ward-Jones, C. Banks, J. del Campo, R. Mas, F.X. Munoz et al., The cyclic and linear sweep voltammetry of regular arrays of microdisc electrodes: Fitting of experimental data J. Electroanal. Chem 585, 51–62 (2005). doi: 10.1016/j.jelechem.2005.07.021 CrossRefGoogle Scholar
  8. R.H. Farahi, R.H. Farahi, T.L. Ferrell, A. Guiseppi-Elie, P.A.H.P. Hansen, “Integrated electronics platforms for wireless implantable biosensors” presented at Life Science Systems and Applications Workshop, 2007. LISA 2007. IEEE/NIH, 2007Google Scholar
  9. H.O. Finklea, D.A. Snider, J. Fedyk, E. Sabatani, Y. Gafni, I. Rubinstein, Characterization of octadecanethiol-coated gold electrodes as microarray electrodes by cyclic voltammetry and ac impedance spectroscopy Langmuir 19, 3660–3667 (1993). doi: 10.1021/la00036a050 CrossRefGoogle Scholar
  10. M. Gerritsen, A. Kros, V. Sprakel, J. Lutterman, R. Nolte, J. Jansen, Biocompatibility evaluation of sol-gel coatings for subcutaneously implantable glucose sensors Biomaterials 21, 71–78 (2000). doi: 10.1016/S0142-9612(99)00136-2 CrossRefGoogle Scholar
  11. R. Gifford, J. Kehoe, S. Barnes, B. Kornilayev, M. Alterman, G. Wilson, Protein interactions with subcutaneously implanted biosensors Biomaterials 27, 2587–2598 (2006). doi: 10.1016/j.biomaterials.2005.11.033 CrossRefGoogle Scholar
  12. O. Gonzalez-Garcia, C. Arino, J. Diaz-Cruz, M. Esteban, Chronoamperometric and voltammetric characterization of gold ultramicroelectrode arrays Electroanalysis 19, 429–435 (2007). doi: 10.1002/elan.200603727 CrossRefGoogle Scholar
  13. A. Guiseppi-Elie, S. Brahim, G. Slaughter, K. Ward, Design of a subcutaneous implantable biochip for monitoring of glucose and lactate IEEE Sens. J. 5, 345–355 (2005). doi: 10.1109/JSEN.2005.846173 CrossRefGoogle Scholar
  14. F.J. Holly, M.F. Refojo, Wettability of hydrogels I. Poly(2-hydroxyethyl methacrylate) J. Biomed. Mater. Res 9, 315–326 (1975). doi: 10.1002/jbm.820090307 CrossRefGoogle Scholar
  15. H.J. Lee, C. Beriet, R. Ferrigno, H. Girault, Cyclic voltammetry at a regular microdisc electrode array J. Electroanal. Chem 502, 138–145 (2001). doi: 10.1016/S0022-0728(01)00343-6 CrossRefGoogle Scholar
  16. M. Morita, M. Longmire, R.W. Murray, Solid-state voltammetry in a three electrode electrochemical cell-on-a-chip with a microlithographically defined microelectrode Anal. Chem 60, 2770–2775 (1988). doi: 10.1021/ac00175a026 CrossRefGoogle Scholar
  17. M. Morita, O. Niwa, T. Horiuchi, Interdigitated array microelectrodes as electrochemical sensors. Electrochim. Acta 42, 3177–3183 (1997). doi: 10.1016/S0013-4686(97)00171-0 CrossRefGoogle Scholar
  18. I. Moser, G. Jobst, G. Urban, Biosensor arrays for simultaneous measurement of glucose, lactate, glutamate and glutamine Biosens. Bioelectron. 17, 297–302 (2002). doi: 10.1016/S0956-5663(01)00298-6 CrossRefGoogle Scholar
  19. F. Moussy, D. Harrison, D. O’Brien, R. Rajotte, Performance of subcutaneously implanted needle-type glucose sensors employing a novel trilayer coating Anal. Chem. 65, 2072–2077 (1993). doi: 10.1021/ac00063a023 CrossRefGoogle Scholar
  20. F. Moussy, D. Harrison, R. Rajotte, A miniaturized Nafion-based glucose sensor: in vivo evaluation in dogs Int. J. Artif. Organs 17, 88–94 (1994)Google Scholar
  21. L. Murphy, Biosensors and bioelectrochemistry Curr. Opin. Chem. Biol. 10, 177–184 (2006). doi: 10.1016/j.cbpa.2006.02.023 CrossRefGoogle Scholar
  22. R.S. Nicholson, I. Shain, Theory of stationary electrode polarography: Single scan and cyclic methods applied to reversible, irreversible, and kinetic systems Anal. Chem 36, 706–723 (1964). doi: 10.1021/ac60210a007 CrossRefGoogle Scholar
  23. J. Pickup, D. Claremont, G. Shaw, Responses and calibration of amperometric glucose sensors implanted in the subcutaneous tissue of man Acta Diabetol. 30, 143–148 (1993). doi: 10.1007/BF00572858 CrossRefGoogle Scholar
  24. Y. Saito, Rev Polarog (Japan), vol. 15, pp. 177 (1968)Google Scholar
  25. O. Schuvailo, O. Soldatkin, A. Lefebvre, R. Cespuglio, and A. Soldatkin, Highly selective microbiosensors for in vivo measurement of glucose, lactate and glutamate. Analytica Chimica Acta, vol. Epub 110-6, pp. 573–574, (2006)Google Scholar
  26. A. Steinschaden, D. Adamovic, G. Jobst, R. Glatz, G. Urban, Miniaturised thin film conductometric biosensors with high dynamic range and high sensitivity Sens. Actuators B Chem 44, 365–369 (1997). doi: 10.1016/S0925-4005(97)00227-X CrossRefGoogle Scholar
  27. J. Vincent, Lactate and biochemical indexes of oxygenation, in Principles and Practice of Intensive Care Monitoring, ed. by M. Tobin (McGraw-Hill, New York, 1998)Google Scholar
  28. K. Ward, R. Ivatury, R. Barbee, Endpoints of resuscitation for the victim of trauma J. Intensive Care Med. 16, 55–75 (2001). doi: 10.1046/j.1525-1489.2001.00055.x CrossRefGoogle Scholar
  29. W. Ward, J. Jouse, J. Birck, E. Anderson, L. Jansen, A wire-based dual-analyte sensor for glucose and lactate: in vitro and in vivo evaluation Diabetes Technol. Ther. 6, 389–401 (2004). doi: 10.1089/152091504774198106 CrossRefGoogle Scholar
  30. G. Wilson, R. Gifford, Biosensors for real-time in vivo measurements Biosens. Bioelectron 20, 2388–2403 (2005). doi: 10.1016/j.bios.2004.12.003 CrossRefGoogle Scholar
  31. B. Yu, Y. Ju, Y. Moussy, F. Moussy, An investigation of long-term performance of minimally invasive glucose biosensors Diabetes Technol. Ther. 9, 265–275 (2007). doi: 10.1089/dia.2006.0020 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Gusphyl Justin
    • 1
  • Stephen Finley
    • 1
    • 2
  • Abdur Rub Abdur Rahman
    • 1
  • Anthony Guiseppi-Elie
    • 1
    • 2
    • 3
  1. 1.Center for Bioelectronics, Biosensors and Biochips (C3B)Clemson University Advanced Materials CenterAndersonUSA
  2. 2.Department of Chemical and Biomolecular EngineeringClemson UniversityClemsonUSA
  3. 3.Department of BioengineeringClemson UniversityClemsonUSA

Personalised recommendations