Biomedical Microdevices

, 11:75 | Cite as

Towards an implantable biochip for glucose and lactate monitoring using microdisc electrode arrays (MDEAs)

  • Abdur Rub Abdur Rahman
  • Gusphyl Justin
  • Anthony Guiseppi-Elie
Article

Abstract

A complete electrochemical cell-on-a-chip that uses the MicroDisc Electrode Array (MDEA) working electrode (WE) design was evaluated for eventual intramuscular implantation for the continuous amperometric monitoring of glucose and lactate in an animal trauma model. The microfabricated ECC MDEA5037 comprises two discrete electrochemical cells-on-a-chip (ECCs), each with a reference, counter, and MDEA working electrode. Each MDEA comprises 37 microdiscs (diameter = 50 µm) arranged in a Hexagonal Closed Packed (HCP) arrangement with a center to center distance (d) of 100 µm. Cyclic Voltammetry (CV) and Electrical Impendence Spectroscopy (EIS) reveals that this device scales in its interfacial properties with a corresponding MDEA 050 device that comprises 5,184 microdiscs. Parallel development of miniaturized mixed-signal integrated electronics for wireless reprogramming, data acquisition and communication addresses the key issues involved in developing measurement electronics, AD/DA processing, power management and telemetry for implantable amperometric biosensors. A generalized electronics platform based on the Texas Instruments TI NC01101 chip has been developed that may be readily applied to many types of biotransducers with minor modifications.

Keywords

Biotransducers Implantable biosensors Microarrays Integrated biochips 

Notes

Acknowledgements

This work was supported by the US Department of Defense (DoDPRMRP) grant PR023081/DAMD17-03-1-0172 and by the Consortium of the Clemson University Center for Bioelectronics, Biosensors and Biochips. The authors acknowledge work to order contributions of Peter Hansen at Telesensors.

References

  1. A.R. Abdur Rahman, D.T. Price, S. Bhansali, Effect of electrode geometry on the impedance evaluation of tissue and cell culture Sens. Actuators B Chem. 127, 89–96 (2007)doi: 10.1016/j.snb.2007.07.038 CrossRefGoogle Scholar
  2. J. Aguilo, J. Millan, R. Villa, Micro and nano technologies in medical applications: a challenge, in Semiconductor Conference, 2001. CAS 2001 Proceedings. International, vol. 1, 247–255 (2001)Google Scholar
  3. C. Amatore, J.M. Saveant, D. Tessier, Charge transfer at partially blocked surfaces: A model for the case of microscopic active and inactive sites J. Electroanal. Chem. 147, 39–51 (1983)doi: 10.1016/S0022-0728(83)80055-2 CrossRefGoogle Scholar
  4. K. Arshak, E. Jafer, G. Lyons, D. Morris, O. Korostynska, A review of low-power wireless sensor microsystems for biomedical capsule diagnosis Microelectron. Int. 21, 8–19 (2004)doi: 10.1108/13565360410549675 CrossRefGoogle Scholar
  5. S. Asaftei, L. Walder, Covalent layer-by-layer type modification of electrodes using ferrocene derivatives and crosslinkers Electrochim. Acta 49, 4679–4685 (2004)doi: 10.1016/j.electacta.2004.05.022 CrossRefGoogle Scholar
  6. P.N. Bartlett, K.F.E. Pratt, A study of the kinetics of the reaction between ferrocene monocarboxylic acid and glucose oxidase using the rotating-disc electrode J. Electroanal. Chem. 397, 53–60 (1995)doi: 10.1016/0022-0728(95)04173-8 CrossRefGoogle Scholar
  7. P.N. Bartlett, S.L. Taylor, An accurate microdisc simulation model for recessed microdisc electrodes J. Electroanal. Chem. 453, 49–60 (1998)doi: 10.1016/S0022-0728(98)00242-3 CrossRefGoogle Scholar
  8. R. Bashir, BioMEMS: state-of-the-art in detection, opportunities and prospects Adv. Drug Deliv. Rev. 56, 1565–1586 (2004)doi: 10.1016/j.addr.2004.03.002 CrossRefGoogle Scholar
  9. C. Beriet, R. Ferrigno, H.H. Girault, Simulation of the chronoamperometric response of a regular array of micro-disc electrodes J. Electroanal. Chem. 486, 56–64 (2000)doi: 10.1016/S0022-0728(00)00130-3 CrossRefGoogle Scholar
  10. E.J. Calvo, R. Etchenique, C. Danilowicz, L. Diaz, Electrical communication between electrodes and enzymes mediated by redox hydrogels Anal. Chem. 68, 4186–4193 (1996)doi: 10.1021/ac960170n CrossRefGoogle Scholar
  11. K.C. Cheung, P. Renaud, BioMEMS for medicine: On-chip cell characterization and implantable microelectrodes Solid-State Electron. 50, 551–557 (2006)doi: 10.1016/j.sse.2006.03.023 CrossRefGoogle Scholar
  12. T.J. Davies, R.G. Compton, The cyclic and linear sweep voltammetry of regular and random arrays of microdisc electrodes: Theory J. Electroanal. Chem. 585, 63–82 (2005)doi: 10.1016/j.jelechem.2005.07.022 CrossRefGoogle Scholar
  13. T.J. Davies, S. Ward-Jones, C.E. Banks, J. del Campo, R. Mas, F.X. Munoz et al., The cyclic and linear sweep voltammetry of regular arrays of microdisc electrodes: Fitting of experimental data J. Electroanal. Chem. 585, 51–62 (2005)doi: 10.1016/j.jelechem.2005.07.021 CrossRefGoogle Scholar
  14. J. Fleig, J. Maier, Local conductivity measurements on AgCl surfaces using microelectrodes Solid State Ionics 85, 9–15 (1996)doi: 10.1016/0167-2738(96)00035-5 CrossRefGoogle Scholar
  15. S. Fletcher, M.D. Horne, Random assemblies of microelectrodes (RAM(TM) electrodes) for electrochemical studies Electrochem. Commun. 1, 502–512 (1999)doi: 10.1016/S1388-2481(99)00100-9 CrossRefGoogle Scholar
  16. M.C. Frost, M.E. Meyerhoff, Implantable chemical sensors for real-time clinical monitoring: progress and challenges Curr. Opin. Chem. Biol. 6, 633–641 (2002)doi: 10.1016/S1367-5931(02)00371-X CrossRefGoogle Scholar
  17. O. Gonzalez-Garcia, C. Arino, J.M. Diaz-Cruz, M. Esteban, Chronoamperometric and Voltammetric Characterization of Gold Ultramicroelectrode Arrays Electroanalysis—Weinheim 19, 429 (2007)CrossRefGoogle Scholar
  18. A. Guiseppi-Elie, S. Brahim, G. Slaughter, K.R. Ward, Design of a subcutaneous implantable biochip for monitoring of glucose and lactate Sensors J. IEEE 5, 345–355 (2005)doi: 10.1109/JSEN.2005.846173 CrossRefGoogle Scholar
  19. A.M. Laird, P.R. Miller, P.D. Kilgo, J. Meredith, M.C. Chang, Relationship of early hyperglycemia to mortality in trauma patients J. Trauma Inj. Infect. Crit. Care 56, 1058–1062 (2004)doi: 10.1097/01.TA.0000123267.39011.9F CrossRefGoogle Scholar
  20. H.J. Lee, C. Beriet, R. Ferrigno, H.H. Girault, Cyclic voltammetry at a regular microdisc electrode array J. Electroanal. Chem. 502, 138–145 (2001)doi: 10.1016/S0022-0728(01)00343-6 CrossRefGoogle Scholar
  21. A.J. MacLeod, A note on the Randles–Sevcik function from electrochemistry Appl. Math. Comput. 57, 305–310 (1993)doi: 10.1016/0096-3003(93)90154-7 MATHCrossRefMathSciNetGoogle Scholar
  22. M.J. Madou, Fundamentals of Microfabrication (CRC, Boca Raton, Fla, 1997)Google Scholar
  23. L.J. Michaud, F.P. Rivara, W.T. Longstreth Jr., M.S. Grady, Elevated initial blood glucose levels and poor outcome following severe brain injuries in children J. Trauma 31, 1356–1362 (1991)doi: 10.1097/00005373-199110000-00007 CrossRefGoogle Scholar
  24. C. Padeste, B. Steiger, A. Grubelnik, L. Tiefenauer, Molecular assembly of redox-conductive ferrocene–streptavidin conjugates—towards bio-electrochemical devices Biosens. Bioelectron. 20, 545–552 (2004)doi: 10.1016/j.bios.2004.03.004 CrossRefGoogle Scholar
  25. P. Rai-Choudhury, Handbook of Microlithography, Micromachining, and Microfabrication: Microlithography (Society of Photo Optical, California, 1997)Google Scholar
  26. U. Rammelt, G. Reinhard, On the applicability of a constant phase element (CPE) to the estimation of roughness of solid metal electrodes Electrochim. Acta 35, 1045 (1990)doi: 10.1016/0013-4686(90)90040-7 CrossRefGoogle Scholar
  27. S. Rodewald, J. Fleig, J. Maier, Measurement of conductivity profiles in acceptor-doped strontium titanate J. Eur. Ceram. Soc. 19, 797–801 (1999)doi: 10.1016/S0955-2219(98)00317-3 CrossRefGoogle Scholar
  28. P. Valdastri, A. Menciassi, A. Arena, C. Caccamo, P. Dario, An implantable telemetry platform system for in vivo monitoring of physiological parameters Inf. Technol. Biomed. IEEE Trans. 8, 271–278 (2004)doi: 10.1109/TITB.2004.834389 CrossRefGoogle Scholar
  29. J. Wang, Glucose Biosensors: 40 Years of Advances and Challenges Electroanalysis 13, 983 (2001)doi: 10.1002/1521-4109(200108)13:12<983::AID-ELAN983>3.0.CO;2-# CrossRefGoogle Scholar
  30. J. Wegener, S. Zink, P. Rösen, H.J. Galla, Use of electrochemical impedance measurements to monitor b-adrenergic stimulation of bovine aortic endothelial cells Pflugers Arch. Eur. J. Physiol. 437, 925–934 (1999)doi: 10.1007/s004240050864 CrossRefGoogle Scholar
  31. X. Wei, M. Zhang, W. Gorski, Coupling the lactate oxidase to electrodes by ionotropic gelation of biopolymer Anal. Chem. 75, 2060–2064 (2003)doi: 10.1021/ac020765k CrossRefGoogle Scholar
  32. Y. Wickramasinghe, Y. Yang, S.A. Spencer, Current Problems and Potential Techniques in In Vivo Glucose Monitoring J. Fluoresc. 14, 513–520 (2004)doi: 10.1023/B:JOFL.0000039339.36839.19 CrossRefGoogle Scholar
  33. G.S. Wilson, R. Gifford, Biosensors for real-time in vivo measurements Biosens. Bioelectron. 20, 2388–2403 (2005)doi: 10.1016/j.bios.2004.12.003 CrossRefGoogle Scholar
  34. S. Yendamuri, G.J. Fulda, G.H. Tinkoff, Admission hyperglycemia as a prognostic indicator in trauma J. Trauma Inj. Infect. Crit. Care 55, 33–38 (2003)doi: 10.1097/01.TA.0000074434.39928.72 CrossRefGoogle Scholar
  35. F.F. Zhang, Q. Wan, X.L. Wang, Z.D. Sun, Z.Q. Zhu, Y.Z. Xian et al., Amperometric sensor based on ferrocene-doped silica nanoparticles as an electron transfer mediator for the determination of glucose in rat brain coupled to in vivo microdialysis J. Electroanal. Chem. 571, 133–138 (2004)doi: 10.1016/j.jelechem.2004.04.019 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Abdur Rub Abdur Rahman
    • 1
  • Gusphyl Justin
    • 1
  • Anthony Guiseppi-Elie
    • 1
    • 2
    • 3
  1. 1.Center for Bioelectronics, Biosensors and Biochips (C3B)Clemson UniversityAndersonUSA
  2. 2.Department of Chemical and Biomolecular EngineeringClemson UniversityClemsonUSA
  3. 3.Department of BioengineeringClemson UniversityClemsonUSA

Personalised recommendations