Biomedical Microdevices

, Volume 11, Issue 1, pp 49–63

Nanotechnology for breast cancer therapy

  • Takemi Tanaka
  • Paolo Decuzzi
  • Massimo Cristofanilli
  • Jason H. Sakamoto
  • Ennio Tasciotti
  • Fredika M. Robertson
  • Mauro Ferrari
Short Report

Abstract

Breast cancer is the field of medicine with the greatest presence of nanotechnological therapeutic agents in the clinic. A pegylated form of liposomally encapsulated doxorubicin is routinely used for treatment against metastatic cancer, and albumin nanoparticulate chaperones of paclitaxel were approved for locally recurrent and metastatic disease in 2005. These drugs have yielded substantial clinical benefit, and are steadily gathering greater beneficial impact. Clinical trials currently employing these drugs in combination with chemo and biological therapeutics exceed 150 worldwide. Despite these advancements, breast cancer morbidity and mortality is unacceptably high. Nanotechnology offers potential solutions to the historical challenge that has rendered breast cancer so difficult to contain and eradicate: the extreme biological diversity of the disease presentation in the patient population and in the evolutionary changes of any individual disease, the multiple pathways that drive disease progression, the onset of ‘resistance’ to established therapeutic cocktails, and the gravity of the side effects to treatment, which result from generally very poor distribution of the injected therapeutic agents in the body. A fundamental requirement for success in the development of new therapeutic strategies is that breast cancer specialists—in the clinic, the pharmaceutical and the basic biological laboratory—and nanotechnologists—engineers, physicists, chemists and mathematicians—optimize their ability to work in close collaboration. This further requires a mutual openness across cultural and language barriers, academic reward systems, and many other ‘environmental’ divides. This paper is respectfully submitted to the community to help foster the mutual interactions of the breast cancer world with micro- and nano-technology, and in particular to encourage the latter community to direct ever increasing attention to breast cancer, where an extraordinary beneficial impact may result. The paper initiates with an introductory overview of breast cancer, its current treatment modalities, and the current role of nanotechnology in the clinic. Our perspectives are then presented on what the greatest opportunities for nanotechnology are; this follows from an analysis of the role of biological barriers that adversely determine the biological distribution of intravascularly injected therapeutic agents. Different generations of nanotechnology tools for drug delivery are reviewed, and our current strategy for addressing the sequential bio-barriers is also presented, and is accompanied by an encouragement to the community to develop even more effective ones.

Keywords

Nanotechnology Breast cancer Biological barrier Porous silicon Drug delivery 

References

  1. M.S. Aapro, Adjuvant therapy of primary breast cancer: a review of key findings from the 7th international conference, St. Gallen, February 2001 Oncologist 6, 376–385 (2001) doi:10.1634/theoncologist.6-4-376 CrossRefGoogle Scholar
  2. M. Azemar, S. Djahansouzi, E. Jager, C. Solbach, M. Schmidt, A.B. Maurer et al., Regression of cutaneous tumor lesions in patients intratumorally injected with a recombinant single-chain antibody-toxin targeted to ErbB2/HER2 Breast Cancer Res. Treat. 82, 155–164 (2003) doi:10.1023/B:BREA.0000004371.48757.19 CrossRefGoogle Scholar
  3. D.C. Bibby, J.E. Talmadge, M.K. Dalal, S.G. Kurz, K.M. Chytil, S.E. Barry et al., Pharmacokinetics and biodistribution of RGD-targeted doxorubicin-loaded nanoparticles in tumor-bearing mice Int. J. Pharm. 293, 281–290 (2005) doi:10.1016/j.ijpharm.2004.12.021 CrossRefGoogle Scholar
  4. N. Bogdanova, S. Feshchenko, C. Cybulski, T. Dork, CHEK2 mutation and hereditary breast cancer J. Clin. Oncol. 25, e26 (2007) doi:10.1200/JCO.2007.11.4223 CrossRefGoogle Scholar
  5. Y. Boucher, L.T. Baxter, R.K. Jain, Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: implications for therapy Cancer Res. 50, 4478–4484 (1990)Google Scholar
  6. Y. Boucher, J.M. Kirkwood, D. Opacic, M. Desantis, R.K. Jain, Interstitial hypertension in superficial metastatic melanomas in humans Cancer Res. 51, 6691–6694 (1991)Google Scholar
  7. P. Buchler, H.A. Reber, M.M. Roth, M. Shiroishi, H. Friess, O.J. Hines, Target therapy using a small molecule inhibitor against angiogenic receptors in pancreatic cancer Neoplasia 9, 119–127 (2007) doi:10.1593/neo.06616 CrossRefGoogle Scholar
  8. L.A. Carey, E.C. Dees, L. Sawyer, L. Gatti, D.T. Moore, F. Collichio et al., The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes Clin. Cancer Res. 13, 2329–2334 (2007) doi:10.1158/1078-0432.CCR-06-1109 CrossRefGoogle Scholar
  9. S. Cleator, W. Heller, R.C. Coombes, Triple-negative breast cancer: therapeutic options Lancet Oncol. 8, 235–244 (2007) doi:10.1016/S1470-2045(07)70074-8 CrossRefGoogle Scholar
  10. M.J. Cloninger, Biological applications of dendrimers Curr. Opin. Chem. Biol. 6, 742–748 (2002) doi:10.1016/S1367-5931(02)00400-3 CrossRefGoogle Scholar
  11. M.A. Cobleigh, C.L. Vogel, D. Tripathy, N.J. Robert, S. Scholl, L. Fehrenbacher et al., Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease J. Clin. Oncol. 17, 2639–2648 (1999)Google Scholar
  12. J. Cuzick, T. Powles, U. Veronesi, J. Forbes, R. Edwards, S. Ashley et al., Overview of the main outcomes in breast-cancer prevention trials Lancet 361, 296–300 (2003) doi:10.1016/S0140-6736(03)12342-2 CrossRefGoogle Scholar
  13. A.M. Davidoff, P.A. Humphrey, J.D. Iglehart, J.R. Marks, Genetic basis for p53 overexpression in human breast cancer Proc. Natl. Acad. Sci. USA 88, 5006–5010 (1991) doi:10.1073/pnas.88.11.5006 CrossRefGoogle Scholar
  14. P. Decuzzi, M. Ferrari, The adhesive strength of non-spherical particles mediated by specific interactions Biomaterials 27, 5307–5314 (2006) doi:10.1016/j.biomaterials.2006.05.024 CrossRefGoogle Scholar
  15. P. Decuzzi, M. Ferrari, Design maps for nanoparticles targeting the diseased microvasculature Biomaterials 29, 377–384 (2008)Google Scholar
  16. P. Decuzzi, S. Lee, B. Bhushan, M. Ferrari, A theoretical model for the margination of particles within blood vessels Ann. Biomed. Eng. 33, 179–190 (2005) doi:10.1007/s10439-005-8976-5 CrossRefGoogle Scholar
  17. P. Decuzzi, R. Pasqualini, W. Arap, M. Ferrari, Intravascular delivery of particulate systems: Does geometry really matter? Pharm. Res. (2008) AcceptedGoogle Scholar
  18. A. Di Paolo, Liposomal anticancer therapy: pharmacokinetic and clinical aspects J. Chemother. 16(Suppl 4), 90–93 (2004)Google Scholar
  19. R. Duncan, The dawning era of polymer therapeutics Nat. Rev. Drug Discov. 2, 347–360 (2003) doi:10.1038/nrd1088 CrossRefGoogle Scholar
  20. Early Breast Cancer Trialists’ Collaborative Group, Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials Lancet 365, 1687–1717 (2005) doi:10.1016/S0140-6736(05)66544-0 Google Scholar
  21. J.M. Elwood, B. Cox, A.K. Richardson, The effectiveness of breast cancer screening by mammography in younger women. Online J. Curr. Clin. Trials Doc No 32:[23,227 words; 195 paragraphs] (1993)Google Scholar
  22. O.C. Farokhzad, J. Cheng, B.A. Teply, I. Sherifi, S. Jon, P.W. Kantoff et al., Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo Proc. Natl. Acad. Sci. USA 103, 6315–6320 (2006a) doi:10.1073/pnas.0601755103 CrossRefGoogle Scholar
  23. O.C. Farokhzad, J.M. Karp, R. Langer, Nanoparticle-aptamer bioconjugates for cancer targeting Expert Opin. Drug Deliv. 3, 311–324 (2006b) doi:10.1517/17425247.3.3.311 CrossRefGoogle Scholar
  24. B.M. Fendly, M. Winget, R.M. Hudziak, M.T. Lipari, M.A. Napier, A. Ullrich, Characterization of murine monoclonal antibodies reactive to either the human epidermal growth factor receptor or HER2/neu gene product Cancer Res. 50, 1550–1558 (1990)Google Scholar
  25. M. Ferrari, Cancer nanotechnology: opportunities and challenges Nat. Rev. Cancer 5, 161–171 (2005a) doi:10.1038/nrc1566 CrossRefGoogle Scholar
  26. M. Ferrari, Nanovector therapeutics Curr. Opin. Chem. Biol. 9, 343–346 (2005b) doi:10.1016/j.cbpa.2005.06.001 CrossRefGoogle Scholar
  27. M. Ferrari, Beyond drug delivery Nat. Nanotechnol. 3, 131–132 (2008a) doi:10.1038/nnano.2008.46 CrossRefGoogle Scholar
  28. M. Ferrari, Cancer Nanotechnology, in Cancer Medicine e.8, ed. by R. Bast, E. Frei, J.F. Holland, et al. (BC Decker Inc.), (2008b) (in press)Google Scholar
  29. B. Fisher, J.P. Costantino, D.L. Wickerham, R.S. Cecchini, W.M. Cronin, A. Robidoux et al., Tamoxifen for the prevention of breast cancer: current status of the National Surgical Adjuvant Breast and Bowel Project P-1 study J. Natl. Cancer Inst. 97, 1652–1662 (2005)Google Scholar
  30. F.A. Fornari, J.K. Randolph, J.C. Yalowich, M.K. Ritke, D.A. Gewirtz, Interference by doxorubicin with DNA unwinding in MCF-7 breast tumor cells Mol. Pharmacol. 45, 649–656 (1994)Google Scholar
  31. T. Fujita, A scanning electron microscope study of the human spleen Arch. Histol. Jpn. 37, 187–216 (1974)Google Scholar
  32. A. Gabizon, H. Shmeeda, A.T. Horowitz, S. Zalipsky, Tumor cell targeting of liposome-entrapped drugs with phospholipid-anchored folic acid-PEG conjugates Adv. Drug Deliv. Rev. 56, 1177–1192 (2004) doi:10.1016/j.addr.2004.01.011 CrossRefGoogle Scholar
  33. F. Gentile, M. Ferrari, P. Decuzzi, The transport of nanoparticles in blood vessels: the effect of vessel permeability and blood rheology Ann. Biomed. Eng. 36, 254–261 (2008) doi:10.1007/s10439-007-9423-6 CrossRefGoogle Scholar
  34. A.M. Gobin, M.H. Lee, N.J. Halas, W.D. James, R.A. Drezek, J.L. West, Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy Nano Lett. 7, 1929–1934 (2007) doi:10.1021/nl070610y CrossRefGoogle Scholar
  35. S. Green, P. Walter, V. Kumar, A. Krust, J.M. Bornert, P. Argos et al., Human oestrogen receptor cDNA: sequence, expression and homology to v-erb-A Nature 320, 134–139 (1986) doi:10.1038/320134a0 CrossRefGoogle Scholar
  36. J.J. Green, E. Chiu, E.S. Leshchiner, J. Shi, R. Langer, D.G. Anderson, Electrostatic ligand coatings of nanoparticles enable ligand-specific gene delivery to human primary cells Nano Lett. 7, 874–879 (2007) doi:10.1021/nl062395b CrossRefGoogle Scholar
  37. H. Hashizume, P. Baluk, S. Morikawa, J.W. McLean, G. Thurston, S. Roberge et al., Openings between defective endothelial cells explain tumor vessel leakiness Am. J. Pathol. 156, 1363–1380 (2000)Google Scholar
  38. C.H. Heldin, K. Rubin, K. Pietras, A. Ostman, High interstitial fluid pressure—an obstacle in cancer therapy Nat. Rev. Cancer 4, 806–813 (2004) doi:10.1038/nrc1456 CrossRefGoogle Scholar
  39. P. Henneke, D.T. Golenbock, Phagocytosis, innate immunity, and host-pathogen specificity J. Exp. Med. 199, 1–4 (2004) doi:10.1084/jem.20031256 CrossRefGoogle Scholar
  40. L.R. Hirsch, R.J. Stafford, J.A. Bankson, S.R. Sershen, B. Rivera, R.E. Price et al., Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003) doi:10.1073/pnas.2232479100 CrossRefGoogle Scholar
  41. G.N. Hortobagyi, Anthracyclines in the treatment of cancer. An overview Drugs 54(Suppl 4), 1–7 (1997) doi:10.2165/00003495-199754010-00001 Google Scholar
  42. L. Illum, S.S. Davis, The targeting of drugs parenterally by use of microspheres J. Parenter. Sci. Technol. 36, 242–248 (1982)Google Scholar
  43. M. Infanger, M. Shakibaei, P. Kossmehl, S.M. Hollenberg, J. Grosse, S. Faramarzi et al., Intraluminal application of vascular endothelial growth factor enhances healing of microvascular anastomosis in a rat model J. Vasc. Res. 42, 202–213 (2005) doi:10.1159/000085176 CrossRefGoogle Scholar
  44. R.K. Jain, Molecular regulation of vessel maturation Nat. Med. 9, 685–693 (2003) doi:10.1038/nm0603-685 CrossRefGoogle Scholar
  45. A. Jemal, R. Siegel, E. Ward, T. Murray, J. Xu, M.J. Thun, Cancer statistics, 2007 CA Cancer J. Clin. 57, 43–66 (2007)CrossRefGoogle Scholar
  46. N.W. Kam, M. O'Connell, J.A. Wisdom, H. Dai, Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction Proc. Natl. Acad. Sci. USA 102, 11600–11605 (2005) doi:10.1073/pnas.0502680102 CrossRefGoogle Scholar
  47. M.W. Kanan, T.J. Ryan, A.G. Weddell, The behaviour of the nasal mucosa towards blood borne colloidal carbon in experimental animals Pathol. Eur. 10, 263–276 (1975)Google Scholar
  48. M. Karon, S. Weissman, C. Meyer, P. Henry, Studies of DNA, Rna, and Protein Synthesis in Cultured Human Cells Exposed to 8-Azaguanine Cancer Res. 25, 185–192 (1965)Google Scholar
  49. K Kerlikowske, Efficacy of screening mammography among women aged 40 to 49 years and 50 to 69 years: comparison of relative and absolute benefit J. Natl. Cancer Inst. Monogr. 22, 79–86 (1997)Google Scholar
  50. L.A. Khawli, G.K. Miller, A.L. Epstein, Effect of seven new vasoactive immunoconjugates on the enhancement of monoclonal antibody uptake in tumors Cancer 73, 824–831 (1994) doi:10.1002/1097-0142(19940201)73:3+<824::AID-CNCR2820731312>3.0.CO;2-VCrossRefGoogle Scholar
  51. G. Konecny, G. Pauletti, M. Pegram, M. Untch, S. Dandekar, Z. Aguilar et al., Quantitative association between HER-2/neu and steroid hormone receptors in hormone receptor-positive primary breast cancer J. Natl. Cancer Inst. 95, 142–153 (2003)CrossRefGoogle Scholar
  52. N. Kumar, Taxol-induced polymerization of purified tubulin. Mechanism of action J. Biol. Chem. 256, 10435–10441 (1981)Google Scholar
  53. V. Kumar, S. Green, A. Staub, P. Chambon, Localisation of the oestradiol-binding and putative DNA-binding domains of the human oestrogen receptor EMBO J. 5, 2231–2236 (1986)Google Scholar
  54. V. Kumar, S. Green, G. Stack, M. Berry, J.R. Jin, P. Chambon, Functional domains of the human estrogen receptor Cell 51, 941–951 (1987) doi:10.1016/0092-8674(87)90581-2 CrossRefGoogle Scholar
  55. J.R. Less, T.C. Skalak, E.M. Sevick, R.K. Jain, Microvascular architecture in a mammary carcinoma: branching patterns and vessel dimensions Cancer Res. 51, 265–273 (1991)Google Scholar
  56. J.R. Less, M.C. Posner, Y. Boucher, D. Borochovitz, N. Wolmark, R.K. Jain, Interstitial hypertension in human breast and colorectal tumors Cancer Res. 52, 6371–6374 (1992a)Google Scholar
  57. J.R. Less, T.C. Skalak, E.M. Sevick, R.K. Jain, Microvascular network architecture in a mammary carcinoma EXS 61, 74–80 (1992b)Google Scholar
  58. J. Li, C. Yen, D. Liaw, K. Podsypanina, S. Bose, S.I. Wang et al., PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer Science 275, 1943–1947 (1997) doi:10.1126/science.275.5308.1943 CrossRefGoogle Scholar
  59. J. Liebmann, J.A. Cook, J.B. Mitchell, Cremophor EL, solvent for paclitaxel, and toxicity Lancet 342, 1428 (1993) doi:10.1016/0140-6736(93)92789-V CrossRefGoogle Scholar
  60. C. Loo, A. Lowery, N. Halas, J. West, R. Drezek, Immunotargeted nanoshells for integrated cancer imaging and therapy Nano Lett. 5, 709–711 (2005) doi:10.1021/nl050127s CrossRefGoogle Scholar
  61. H. Maeda, The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting Adv. Enzyme Regul. 41, 189–207 (2001) doi:10.1016/S0065-2571(00)00013-3 CrossRefGoogle Scholar
  62. H. Maeda, J. Fang, T. Inutsuka, Y. Kitamoto, Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications Int. Immunopharmacol. 3, 319–328 (2003) doi:10.1016/S1567-5769(02)00271-0 CrossRefGoogle Scholar
  63. F.J. Martin, K. Melnik, T. West, J. Shapiro, M. Cohen, A.A. Boiarski et al., Acute toxicity of intravenously administered microfabricated silicon dioxide drug delivery particles in mice: preliminary findings Drugs R D. 6, 71–81 (2005) doi:10.2165/00126839-200506020-00002 CrossRefGoogle Scholar
  64. T. Murakami, T. Fujita, M. Miyoshi, Closed circulation in the rat spleen as evidenced by scanning electron microscopy of vascular casts Experientia 29, 1374–1375 (1973) doi:10.1007/BF01922828 CrossRefGoogle Scholar
  65. T. Thei, D. Peter, J.K. Eric Drexler et al., Nan’o.tech.nol’o.gy n. Nat. Nanotechnol. 1, 8–10 (2006) doi 10.1038/nnano.2006.77
  66. S.D. Nathanson, L. Nelson, Interstitial fluid pressure in breast cancer, benign breast conditions, and breast parenchyma Ann. Surg. Oncol. 1, 333–338 (1994)Google Scholar
  67. D. Neri, R. Bicknell, Tumour vascular targeting Nat. Rev. Cancer 5, 436–446 (2005) doi:10.1038/nrc1627 CrossRefGoogle Scholar
  68. D.W. Nyman, K.J. Campbell, E. Hersh, K. Long, K. Richardson, V. Trieu et al., Phase I and pharmacokinetics trial of ABI-007, a novel nanoparticle formulation of paclitaxel in patients with advanced nonhematologic malignancies J. Clin. Oncol. 23, 7785–7793 (2005) doi:10.1200/JCO.2004.00.6148 CrossRefGoogle Scholar
  69. M.O. Oyewumi, R.J. Mumper, Engineering tumor-targeted gadolinium hexanedione nanoparticles for potential application in neutron capture therapy Bioconjug. Chem. 13, 1328–1335 (2002) doi:10.1021/bc025560x CrossRefGoogle Scholar
  70. B. Pan, D. Cui, Y. Sheng, C. Ozkan, F. Gao, R. He et al., Dendrimer-Modified Magnetic Nanoparticles Enhance Efficiency of Gene Delivery System Cancer Res. 67, 8156–8163 (2007) doi:10.1158/0008-5472.CAN-06-4762 CrossRefGoogle Scholar
  71. D.M. Parkin, Global cancer statistics in the year 2000 Lancet Oncol. 2, 533–543 (2001) doi:10.1016/S1470-2045(01)00486-7 CrossRefGoogle Scholar
  72. R. Pasqualini, E. Koivunen, E. Ruoslahti, Alpha v integrins as receptors for tumor targeting by circulating ligands Nat. Biotechnol. 15, 542–546 (1997) doi:10.1038/nbt0697-542 CrossRefGoogle Scholar
  73. J. Peng, X. He, K. Wang, W. Tan, H. Li, X. Xing et al., An antisense oligonucleotide carrier based on amino silica nanoparticles for antisense inhibition of cancer cells Nanomedicine 2, 113–120 (2006)Google Scholar
  74. C.M. Perou, T. Sorlie, M.B. Eisen, M. van de Rijn, S.S. Jeffrey, C.A. Rees et al., Molecular portraits of human breast tumours Nature 406, 747–752 (2000) doi:10.1038/35021093 CrossRefGoogle Scholar
  75. Early Breast Cancer Trialists’ Collaborative Group. Polychemotherapy for early breast cancer: an overview of the randomised trials. Early Breast Cancer Trialists’ Collaborative Group. Lancet 352, 930–942 (1998) doi:10.1016/S0140-6736(98)03301-7 Google Scholar
  76. G.S. Rao, MOde of entry of steroid and thyroid hormones into cells Mol. Cell. Endocrinol. 21, 97–108 (1981) doi:10.1016/0303-7207(81)90047-2 CrossRefGoogle Scholar
  77. R.P. Rapp, B.A. Bivins, Final in-line filtration: removal of contaminants from IV fluids and drugs Hosp. Formul. 18, 1124–1128 (1983)Google Scholar
  78. E. Rivera, Liposomal anthracyclines in metastatic breast cancer: clinical update Oncologist 8(Suppl 2), 3–9 (2003) doi:10.1634/theoncologist.8-suppl_2–3 CrossRefMathSciNetGoogle Scholar
  79. H.D. Roh, Y. Boucher, S. Kalnicki, R. Buchsbaum, W.D. Bloomer, R.K. Jain, Interstitial hypertension in carcinoma of uterine cervix in patients: possible correlation with tumor oxygenation and radiation response Cancer Res. 51, 6695–6698 (1991)Google Scholar
  80. W.R. Sanhai, J.H. Sakamoto, R. Canady, M. Ferrari, Seven challenges for nanomedicine Nat. Nanotechnol. 3, 242–244 (2008) doi:10.1038/nnano.2008.114 CrossRefGoogle Scholar
  81. V. Sharifi-Salamatian, B. Pesquet-Popescu, J. Simony-Lafontaine, J.P. Rigaut, Index for spatial heterogeneity in breast cancer J. Microsc. 216, 110–122 (2004) doi:10.1111/j.0022-2720.2004.01398.x CrossRefMathSciNetGoogle Scholar
  82. D. Simberg, T. Duza, J.H. Park, M. Essler, J. Pilch, L. Zhang et al., Biomimetic amplification of nanoparticle homing to tumors Proc. Natl. Acad. Sci. USA 104, 932–936 (2007) doi:10.1073/pnas.0610298104 CrossRefGoogle Scholar
  83. D.J. Slamon, G.M. Clark, S.G. Wong, W.J. Levin, A. Ullrich, W.L. McGuire, Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene Science 235, 177–182 (1987) doi:10.1126/science.3798106 CrossRefGoogle Scholar
  84. D.J. Slamon, W. Godolphin, L.A. Jones, J.A. Holt, S.G. Wong, D.E. Keith et al., Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer Science 244, 707–712 (1989) doi:10.1126/science.2470152 CrossRefGoogle Scholar
  85. D.J. Slamon, B. Leyland-Jones, S. Shak, H. Fuchs, V. Paton, A. Bajamonde et al., Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2 N. Engl. J. Med. 344, 783–792 (2001) doi:10.1056/NEJM200103153441101 CrossRefGoogle Scholar
  86. E.L. Snyder, C.C. Saenz, C. Denicourt, B.R. Meade, X.S. Cui, I.M. Kaplan et al., Enhanced targeting and killing of tumor cells expressing the CXC chemokine receptor 4 by transducible anticancer peptides Cancer Res. 65, 10646–10650 (2005) doi:10.1158/0008-5472.CAN-05-0118 CrossRefGoogle Scholar
  87. I. Steinhauser, B. Spankuch, K. Strebhardt, K. Langer, Trastuzumab-modified nanoparticles: optimisation of preparation and uptake in cancer cells Biomaterials 27, 4975–4983 (2006) doi:10.1016/j.biomaterials.2006.05.016 CrossRefGoogle Scholar
  88. M. Stohrer, Y. Boucher, M. Stangassinger, R.K. Jain, Oncotic pressure in solid tumors is elevated Cancer Res. 60, 4251–4255 (2000)Google Scholar
  89. A.G. Taghian, R. Abi-Raad, S.I. Assaad, A. Casty, M. Ancukiewicz, E. Yeh et al., Paclitaxel decreases the interstitial fluid pressure and improves oxygenation in breast cancers in patients treated with neoadjuvant chemotherapy: clinical implications J. Clin. Oncol. 23, 1951–1961 (2005) doi:10.1200/JCO.2005.08.119 CrossRefGoogle Scholar
  90. A. Takeda, T. Miyoshi, H. Shimada, T. Ochiai, K. Isono, Enhanced effects of monoclonal antibody carboplatin immunoconjugates uptake and anti-tumor effects with angiotensin II and tumor necrosis factor J. Chemother. 11, 137–143 (1999)Google Scholar
  91. E. Tasciotti, X.W. Liu, R. Bhavane, K. Plant, A.D. Leonard, B.K. Price et al., Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications Nat. Nanotechnol. 3, 151–157 (2008) doi:10.1038/nnano.2008.34 CrossRefGoogle Scholar
  92. K. Umesono, R.M. Evans, Determinants of target gene specificity for steroid/thyroid hormone receptors Cell 57, 1139–1146 (1989) doi:10.1016/0092-8674(89)90051-2 CrossRefGoogle Scholar
  93. D.D. Von Hoff, M.W. Layard, P. Basa, H.L. Davis Jr., A.L. Von Hoff, M. Rozencweig et al., Risk factors for doxorubicin-induced congestive heart failure Ann. Intern. Med. 91, 710–717 (1979)Google Scholar
  94. P.L. Welcsh, M.C. King, BRCA1 and BRCA2 and the genetics of breast and ovarian cancer Hum. Mol. Genet. 10, 705–713 (2001) doi:10.1093/hmg/10.7.705 CrossRefGoogle Scholar
  95. E. Wisse, F. Braet, D. Luo, R. De Zanger, D. Jans, E. Crabbe et al., Structure and function of sinusoidal lining cells in the liver Toxicol. Pathol. 24, 100–111 (1996)CrossRefGoogle Scholar
  96. L. Witte, D.J. Hicklin, Z. Zhu, B. Pytowski, H. Kotanides, P. Rockwell et al., Monoclonal antibodies targeting the VEGF receptor-2 (Flk1/KDR) as an anti-angiogenic therapeutic strategy Cancer Metastasis Rev. 17, 155–161 (1998) doi:10.1023/A:1006094117427 CrossRefGoogle Scholar
  97. J. Wu, T. Akaike, K. Hayashida, T. Okamoto, A. Okuyama, H. Maeda, Enhanced vascular permeability in solid tumor involving peroxynitrite and matrix metalloproteinases Jpn. J. Cancer Res. 92, 439–451 (2001)Google Scholar
  98. F. Yan, R. Kopelman, The embedding of meta-tetra(hydroxyphenyl)-chlorin into silica nanoparticle platforms for photodynamic therapy and their singlet oxygen production and pH-dependent optical properties Photochem. Photobiol. 78, 587–591 (2003) doi:10.1562/0031-8655(2003)078<0587:TEOMIS>2.0.CO;2 CrossRefGoogle Scholar
  99. F. Yan, H. Xu, J. Anker, R. Kopelman, B. Ross, A. Rehemtulla et al., Synthesis and characterization of silica-embedded iron oxide nanoparticles for magnetic resonance imaging J. Nanosci. Nanotechnol. 4, 72–76 (2004) doi:10.1166/jnn.2004.074 CrossRefGoogle Scholar
  100. X. Yang, H. Wang, D.W. Beasley, D.E. Volk, X. Zhao, B.A. Luxon et al., Selection of thioaptamers for diagnostics and therapeutics Ann. N. Y. Acad. Sci. 1082, 116–119 (2006) doi:10.1196/annals.1348.065 CrossRefGoogle Scholar
  101. Y. Yarden, M.X. Sliwkowski, Untangling the ErbB signalling network Nat. Rev. Mol. Cell Biol. 2, 127–137 (2001) doi:10.1038/35052073 CrossRefGoogle Scholar
  102. K.T. Yong, J. Qian, I. Roy, H.H. Lee, E.J. Bergey, K.M. Tramposch et al., Quantum rod bioconjugates as targeted probes for confocal and two-photon fluorescence imaging of cancer cells Nano Lett. 7, 761–765 (2007) doi:10.1021/nl063031m CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Takemi Tanaka
    • 1
  • Paolo Decuzzi
    • 1
    • 2
    • 5
  • Massimo Cristofanilli
    • 3
  • Jason H. Sakamoto
    • 1
  • Ennio Tasciotti
    • 1
  • Fredika M. Robertson
    • 3
  • Mauro Ferrari
    • 1
    • 3
    • 4
  1. 1.Brown Institute of Molecular Medicine, Department of Biomedical EngineeringUniversity of Texas Houston Health Science CenterHoustonUSA
  2. 2.Center of Bio-/Nanotechnology and Bio-/Engineering for MedicineUniversity of Magna GraeciaCatanzaroItaly
  3. 3.Department of Experimental TherapeuticsUniversity of Texas M.D. Anderson Cancer CenterHoustonUSA
  4. 4.Department of BioengineeringRice UniversityHoustonUSA
  5. 5.School of Health Information SciencesUniversity of Texas Houston Health Science CenterHoustonUSA

Personalised recommendations