Biomedical Microdevices

, Volume 10, Issue 6, pp 795–805

In vitro analysis of a hepatic device with intrinsic microvascular-based channels

  • Amedeo Carraro
  • Wen-Ming Hsu
  • Katherine M. Kulig
  • Wing S. Cheung
  • Mark L. Miller
  • Eli J. Weinberg
  • Eric F. Swart
  • Mohammad Kaazempur-Mofrad
  • Jeffrey T. Borenstein
  • Joseph P. Vacanti
  • Craig Neville
Article

Abstract

A novel microfluidics-based bilayer device with a discrete parenchymal chamber modeled upon hepatic organ architecture is described. The microfluidics network was designed using computational models to provide appropriate flow behavior based on physiological data from human microvasculature. Patterned silicon wafer molds were used to generate films with the vascular-based microfluidics network design and parenchymal chamber by soft lithography. The assembled device harbors hepatocytes behind a nanoporous membrane that permits transport of metabolites and small proteins while protecting them from the effects of shear stress. The device can sustain both human hepatoma cells and primary rat hepatocytes by continuous in vitro perfusion of medium, allowing proliferation and maintaining hepatic functions such as serum protein synthesis and metabolism. The design and fabrication processes are scalable, enabling the device concept to serve as both a platform technology for drug discovery and toxicity, and for the continuing development of an improved liver-assist device.

Keywords

Tissue engineering Hepatocytes Liver Microfabrication 

References

  1. J.W. Allen, T. Hassanein, S.N. Bhatia, Hepatology 34(3), 447–455 (2001)CrossRefGoogle Scholar
  2. R. Baudoin, A. Corlu, L. Griscom, C. Legallais, E. Leclerc, Toxicol. In Vitro 21(4), 535–544 (2007)CrossRefGoogle Scholar
  3. K. Bhadriraju, C.S. Chen, Drug Discov. Today 7(11), 612–620 (2002)CrossRefGoogle Scholar
  4. J. Borenstein, H. Terai, K.R. King, E.J. Weinberg, M.R. Kaazempur-Mofrad, J.P. Vacanti, Biomed. Microdevices 4(3), 167–175 (2002)CrossRefGoogle Scholar
  5. S.C. Chen, C. Mullon, E. Kahaku, F. Watanabe, W. Hewitt, S. Eguchi, Y. Middleton, N. Arkadopoulos, J. Rozga, B. Solomon, A.A. Demetriou, Ann. N Y Acad. Sci. 831, 350–360 (1997)CrossRefGoogle Scholar
  6. J.E. Coligan (ed.), Current protocols in protein science (John Wiley & Sons Inc., Brooklyn, N.Y., 1996)Google Scholar
  7. M.R. Kaazempur-Mofrad, J.P. Vacanti, R.D. Kamm, Comp. Fluid Solid Mech. 2, 864–867 (2001)CrossRefGoogle Scholar
  8. S. Kaihara, J. Borenstein, R. Koka, S. Lalan, E.R. Ochoa, M. Ravens, H. Pien, B. Cunningham, J.P. Vacanti, Tissue Eng. 6(2), 105–117 (2000)CrossRefGoogle Scholar
  9. B.J. Kane, M.J. Zinner, M.L. Yarmush, M. Toner, Anal. Chem. 78(13), 4291–4298 (2006)CrossRefGoogle Scholar
  10. M.F. Kiani, A.R. Pries, L.L. Hsu, I.H. Sarelius, G.R. Cokelet, Am. J. Physiol. 266(5 Pt 2), H1822–H1828 (1994)Google Scholar
  11. E. Leclerc, Y. Sakai, T. Fujii, Biotechnol. Prog. 20(3), 750–755 (2004)CrossRefGoogle Scholar
  12. P.J. Lee, P.J. Hung, L.P. Lee, Biotechnol. Bioeng. 97(5), 1340–1346 (2007)CrossRefGoogle Scholar
  13. J.C. McDonald, G.M. Whitesides, Acc. Chem. Res. 35(7), 491–499 (2002)CrossRefGoogle Scholar
  14. J.C. McDonald, M.L. Chabinyc, S.J. Metallo, J.R. Anderson, A.D. Stroock, G.M. Whitesides, Anal. Chem. 74(7), 1537–1545 (2002)CrossRefGoogle Scholar
  15. J.M. Ng, I. Gitlin, A.D. Stroock, G.M. Whitesides, Electrophoresis 23(20), 3461–3473 (2002)CrossRefGoogle Scholar
  16. S. Ostrovidov, J. Jiang, Y. Sakai, T. Fujii, Biomed. Microdevices 6(4), 279–287 (2004)CrossRefGoogle Scholar
  17. A. Pietrangelo, A. Panduro, J.R. Chowdhury, D.A. Shafritz, J. Clin. Invest. 89(6), 1755–1760 (1992)CrossRefGoogle Scholar
  18. A.R. Pries, D. Neuhaus, P. Gaehtgens, Am. J. Physiol. 263(6 Pt 2), H1770–H1778 (1992)Google Scholar
  19. P.O. Seglen, Methods Cell. Biol. 13, 29–83 (1976)CrossRefGoogle Scholar
  20. S. Sen, R. Williams, Semin. Liver Dis. 23(3), 283–294 (2003)CrossRefGoogle Scholar
  21. A.J. Strain, J.M. Neuberger, Science 295(5557), 1005–1009 (2002)CrossRefGoogle Scholar
  22. A.W. Tilles, H. Baskaran, P. Roy, M.L. Yarmush, M. Toner, Biotechnol. Bioeng. 73(5), 379–389 (2001)CrossRefGoogle Scholar
  23. UNOS, Annual Report of the U.S. Organ Procurement and Transplantation Network and the Scientific Registry of Transplant Recipients: Transplant Data 1994–2006 (Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau, Division of Transplantation, Rockville, MD, 2007)Google Scholar
  24. E.J. Weinberg, J.T. Borenstein, M.R.O. Kaazempur-Mofrad, B.J.P. Vacanti, MRS Symp. Proc. 820, 126–127 (2004)Google Scholar
  25. S.A. Wrighton, J.C. Stevens, Crit. Rev. Toxicol. 22(1), 1–21 (1992)CrossRefGoogle Scholar
  26. H. Yamazaki, K. Inoue, M. Mimura, Y. Oda, F.P. Guengerich, T. Shimada, Biochem. Pharmacol. 51(3), 313–319 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Amedeo Carraro
    • 1
    • 2
    • 7
  • Wen-Ming Hsu
    • 1
    • 3
    • 7
  • Katherine M. Kulig
    • 1
    • 7
  • Wing S. Cheung
    • 1
    • 7
  • Mark L. Miller
    • 4
  • Eli J. Weinberg
    • 5
  • Eric F. Swart
    • 4
  • Mohammad Kaazempur-Mofrad
    • 6
  • Jeffrey T. Borenstein
    • 5
  • Joseph P. Vacanti
    • 1
    • 4
    • 7
  • Craig Neville
    • 1
    • 4
    • 7
  1. 1.Department of SurgeryMassachusetts General HospitalBostonUSA
  2. 2.Department of Surgical and Gastroenterological SciencesUniversity of Padua, School of MedicinePadovaItaly
  3. 3.Department of SurgeryNational Taiwan University HospitalTaipeiTaiwan
  4. 4.Harvard Medical SchoolBostonUSA
  5. 5.Biomedical Engineering CenterCharles Stark Draper LaboratoryCambridgeUSA
  6. 6.Department of BioengineeringUniversity of California, BerkeleyBerkeleyUSA
  7. 7.Center for Regenerative MedicineMassachusetts General HospitalBostonUSA

Personalised recommendations