Biomedical Microdevices

, 10:785 | Cite as

Iron-oxide embedded solid lipid nanoparticles for magnetically controlled heating and drug delivery



This paper presents the development of magnetic lipid nanoparticles that could serve as controlled delivery vehicles for releasing encapsulated drugs in a desired manner. The nanoparticles are composed of multiple drugs in lipid matrices, which are solid at body temperature and melt around 45°C to 55°C. In addition, super-paramagnetic γ-Fe2O3 particles with sizes ranging from 5 to 25 nm are surface modified and dispersed uniformly in the lipid nanoparticles. In the prototype demonstration, lipid nanoparticles with average sizes between 100 and 180 nm were fabricated by high-pressure homogenization at elevated temperatures. When exposed to an alternating magnetic field of 60 kA/m at 25 kHz, a solution containing 2 g/L encapsulated γ-Fe2O3 particles showed a temperature increase from 37°C to 50°C in 20 min. Meanwhile, the dissipated heat melted the surrounding lipid matrices and resulted in an accelerated release of the encapsulated drugs. Within 20 min, approximately 35% of the encapsulated drug molecules were released from the lipid nanoparticles through diffusion. As such, the presented lipid nanoparticles enable a new scheme that combines magnetic control of heating and drug delivery, which could greatly enhance the performance of encapsulated drugs.


Drug delivery Hyperthermia Nanoparticles Solid lipid nanoparticles Homogenization Magnetic heating Controlled release 



The demonstrated systems were fabricated in the ESS Microfabrication Lab at National Tsing Hua University, Taiwan. This work was supported in part by the National Science Council of Taiwan under Contract no. NSC 96-2221-E-007-116-MY3.


  1. T.M. Allen, Nat. Rev. Cancer 2, 750 (2002)CrossRefGoogle Scholar
  2. T.M. Allen, P.R. Cullis, Science 303, 1818 (2004)CrossRefGoogle Scholar
  3. W. Andra, in Magnetism in Medicine: A Handbook, ed. by W., Andra, H., Nowak (Wiley-VCH, Berlin, 1998)Google Scholar
  4. D.Y. Arifin, L.Y. Lee, C.H. Wang, Adv. Drug Deliv. Rev. 58, 1274 (2006)CrossRefGoogle Scholar
  5. M. Babincova, P. Cicmanec, V. Altanerova, C. Altaner, P. Babinec, Bioelectrochemistry 55, 17 (2002)CrossRefGoogle Scholar
  6. M. Babincova, V. Altanerova, C. Altaner, P. Cicmanec, P. Babinec, Med. Phys. 31, 2219 (2004)CrossRefGoogle Scholar
  7. L. Brannon-Peppas, J.O. Blanchette, Adv. Drug Deliv. Rev. 56, 1649 (2004)CrossRefGoogle Scholar
  8. D.C. Drummond, M. Zignani, J.C. Leroux, Prog. Lipid Res. 39, 409 (2000)CrossRefGoogle Scholar
  9. A.K. Gupta, M. Gupta, Biomaterials 26, 3995 (2005)CrossRefGoogle Scholar
  10. J.W. Hand, J.R. James, Physical Techniques in Clinical Hyperthermia (Wiley, New York, 1986)Google Scholar
  11. J. Heller, Crit. Rev. Ther. Drug Carr. Syst. 10, 253 (1993)Google Scholar
  12. A. Jordan, R. Scholz, P. Wust, H. Fahling, R. Felix, J. Magn. Magn. Mater. 201, 413 (1999)CrossRefGoogle Scholar
  13. R. Langer, Nature 392S, 5 (1998)Google Scholar
  14. R.T. Liggins, H.M. Burt, Int. J. Pharm. 222, 19 (2001)CrossRefGoogle Scholar
  15. T.G. Mason, J.N. Wilking, K. Meleson, C.B. Chang, S.M. Graves, J. Phys. Condens. Mater. 18, R635 (2006)CrossRefGoogle Scholar
  16. W. Mehnert, K. Mader, Adv. Drug Deliv. Rev. 47, 165 (2001)CrossRefGoogle Scholar
  17. S.M. Moghimi, A.C. Hunter, Trends Biotechnol. 18, 412 (2000)CrossRefGoogle Scholar
  18. S.M. Moghimi, A.C. Hunter, J.C. Murray, Pharmacol. Rev. 53, 283 (2001)Google Scholar
  19. S.M. Moghimi, A.C. Hunter, J.C. Murray, FASEB J. 19, 311 (2005)CrossRefGoogle Scholar
  20. S. Mornet, S. Vasseur, F. Grasset, E. Duguet, J. Mater. Chem. 14, 2161 (2004)CrossRefGoogle Scholar
  21. P. Moroz, S.K. Jones, B.N. Gray, J. Surg. Oncol. 77, 259 (2001)CrossRefGoogle Scholar
  22. R.H. Muller, K. Mader, S. Gohla, Eur. J. Pharm. Biopharm. 50, 161 (2000)CrossRefGoogle Scholar
  23. Q.A. Pankhurst, J. Connolly, S.K. Jones, J. Dobson, J. Phys. D. Appl. Phys. 36, R167 (2003)CrossRefGoogle Scholar
  24. K. Park, Controlled Drug Delivery: Challenges and Strategies (American Chemical Society, Washington, DC, 1997)Google Scholar
  25. L.W. Phipps, Nature 233, 617 (1971)CrossRefGoogle Scholar
  26. A.M. Ponce, Z. Vujaskovic, F. Yuan, D. Needham, M.W. Dewhirst, Int. J. Hyperthermia 22, 205 (2006)CrossRefGoogle Scholar
  27. P.H. Redfern, Drug Deliv. Syst. Sci. 2, 21 (2002)Google Scholar
  28. R.E. Rosensweig, J. Magn. Magn. Mater. 252, 370 (2002)CrossRefGoogle Scholar
  29. M. Sako, S. Hirota, Gan To Kagaku Ryoho 13, 1618 (1986)Google Scholar
  30. C. Schwarz, W. Mehnert, J. Microencapsul. 16, 205 (1999)CrossRefGoogle Scholar
  31. S. Schultz, G. Wagner, K. Urban, J. Ulrich, Chem. Eng. Technol. 27, 361 (2004)CrossRefGoogle Scholar
  32. J. Siepmann, N. Faisant, J. Akiki, J. Richard, J.P. Benoit, J. Control. Release 96, 123 (2004)CrossRefGoogle Scholar
  33. J. Siepmann, K. Elkharraz, F. Siepmann, D. Klose, Biomacromolecules 6, 2312 (2005)CrossRefGoogle Scholar
  34. K.S. Soppimath, T.M. Aminabhavi, A.R. Kulkarni, W.E. Rudzinski, J. Control. Release 70, 1 (2001)CrossRefGoogle Scholar
  35. B.G. Stubbe, S.C. De Smedt, J. Demeester, Pharm. Res. 21, 1732 (2004)CrossRefGoogle Scholar
  36. K.S. Suslick, Science 247, 1439 (1990)CrossRefGoogle Scholar
  37. G.I. Taylor, Proc. R. Soc. Lond. A. 146, 501 (1934)CrossRefGoogle Scholar
  38. E. Viroonchatapan, H. Sato, M. Ueno, I. Adachi, J. Murata, I. Saiki, K. Tazawa, I. Horikoshi, J. Drug Target. 5, 379 (1998)CrossRefGoogle Scholar
  39. A. zur Muhlen, C. Schwarz, W. Mehnert, Eur. J. Pharm. Biopharm. 45, 149 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Engineering and System ScienceNational Tsing Hua UniversityHsinchuTaiwan

Personalised recommendations