Biomedical Microdevices

, 10:777 | Cite as

Sample preparation: the weak link in microfluidics-based biodetection

  • Raymond MariellaJr.


As a broad generalization, clinicians and laboratory personnel who use microfluidics-based automated or semi-automated instrumentation to perform biomedical assays on real-world samples are more pleased with the state of the assays than they are with the state of the front-end sample preparation. The end-to-end procedure requires one to collect, manipulate, prepare, and analyze the sample. The appeal of microfluidics for this procedure is partly based on its combination of small size and its ability to process very small liquid volumes, thus minimizing the use of possibly expensive reagents. However, real-world samples are often large and incompatible with the input port and the μm-scale channels of a microfluidic device, and very small liquid volumes can be inappropriate in analyzing low concentrations of target analytes. It can be a worthy challenge to take a raw sample, introduce it into a microfluidics-based system, and perform the sample preparation, which may include separation and concentration of the target analytes, so that one can benefit from the reagent-conserving small volumes and obtain the correct answer when finally implementing the assay of interest.


Microfluidics Biological assays Sample preparation Acoustics Electrokinetics Integration 



The author wishes to thank his colleagues, at LLNL and elsewhere, who have encouraged and supported him in pursuing the “mission” of sample preparation for fieldable systems. The author also wishes to thank Reviewer#1 for suggesting valuable revisions to this manuscript.


  1. H. Alfthan, C. Haglund, J. Dabek, U.H. Stenman, Clin Chem. 38(10), 1981 (1992)MedlineGoogle Scholar
  2. L.A. Bastian, K. Nanda, V. Hasselblad, D.L. Simel, Arch Fam Med. 7(5), 465 (1998)Medline. DOI  10.1001/archfami.7.5.465 CrossRefGoogle Scholar
  3. P. Belgrader, W. Benett, D. Hadley, G. Long, R. Mariella Jr., F. Milanovich, S. Nasarabadi, W. Nelson, J. Richards, P. Stratton, Clin Chem 44(10), 2191 (1998a)MedlineGoogle Scholar
  4. P. Belgrader, J.K. Smith, V.W. Weedn, M.A. Northrup, J Foren Sci. 43(2), 315 (1998b) MedlineGoogle Scholar
  5. W.R. Boom, H.M.A. Adriaanse, T. Kievits, P.F. Lens, Process for isolating nucleic acid US5234809A. Azko Nobel, Amsterdam (1993)Google Scholar
  6. M. Breitbart, I. Hewson, B. Felts, J.M. Mahaffy, J. Nulton, P. Salamon, F. Rohwer, J Bacteriol. 185(20), 6220 (2003) Medline. DOI  10.1128/JB.185.20.6220-6223.2003 CrossRefGoogle Scholar
  7. P.Y. Chiou, A.T. Ohta, M.C. Wu, Nature 436(7049), 370 (2005) Medline. DOI  10.1038/nature03831 CrossRefGoogle Scholar
  8. L.A. Christel, K. Petersen, W. McMillan, M.A. Northrup, J Biomech Eng. 121(1), 22 (1999) Medline. DOI  10.1115/1.2798037 CrossRefGoogle Scholar
  9. M. Dagenais, L. Mandel, Phys Rev A. 18(5), 2217 (1978) DOI  10.1103/PhysRevA.18.2217 CrossRefGoogle Scholar
  10. L.S. Do Carmo, C. Cummings, V.R. Linardi, R.S. Dias, J.M. De Souza, M.J. De Sena, D.A. Dos Santos, J.W. Shupp, R.K. Pereira, M. Jett, Foodborne Path Dis. 1(4), 241 (2004) Medline. DOI  10.1089/fpd.2004.1.241 CrossRefGoogle Scholar
  11. G.M. Dougherty, D.S. Clague, R.R. Miles, In Saito, T.T., Lehrfeld, D., DeWeert, M.J. (Eds.), Optics and Photonics in Global Homeland Security III. Proc SPIE. 6540, 54016 (2007)Google Scholar
  12. C.J. Easley, J.M. Karlinsey, J.M. Bienvenue, L.A. Legendre, M.G. Roper, S.H. Feldman, M.A. Hughes, E.L. Hewlett, T.J. Merkel, J.P. Ferrance, J.P. Landers, Proc Nat Acad Sci U S A. 103(51), 19272 (2006)CrossRefGoogle Scholar
  13. P.A. Emanuel, R. Bell, J.L. Dang, R. McClanahan, J.C. David, R.J. Burgess, J. Thompson, L. Collins, T. Hadfield, J Clin Microbiol. 41(2), 689 (2003)CrossRefGoogle Scholar
  14. P. Gascoyne, C. Mahidol, M. Ruchirawat, J. Satayavivad, P. Watcharasit, F.F. Becker, Lab on a chip 2(2), 70 (2002)CrossRefGoogle Scholar
  15. P. Gascoyne, J. Satayavivad, M. Ruchirawat, Acta Tropica 89(3), 357 (2004)CrossRefGoogle Scholar
  16. R. Girones, A. Allard, G. Wadell, J. Jofre, Water Sci Technol 27(3–4), 235 (1993)Google Scholar
  17. J.W. Gray, P.N. Dean, J.C. Fuscoe, D.C. Peters, B.J. Trask, G.J. Vandenengh, M.A. Vandilla, Science 238(4825), 323 (1987)CrossRefGoogle Scholar
  18. D.I. Greenfield, R. Marin, S. Jensen, E. Massion, B. Roman, J. Feldman, C.A. Scholin, Limnol Oceanog -Methods. 4, 426 (2006)Google Scholar
  19. J.J. Hawkes, W.T. Coakley, M. Gröschl, E. Benes, S. Armstrong, P.J. Tasker, H. Nowotny, J Acoust Soc Am. 111(3), 1259 (2002)CrossRefGoogle Scholar
  20. M.J. Heller, A.H. Forster, E. Tu, Electrophoresis 21(1), 157 (2000)CrossRefGoogle Scholar
  21. G.S. Hurst, M.H. Nayfeh, J.P. Young, Appl Phys Lett. 30(5), 229 (1977)CrossRefGoogle Scholar
  22. H.M. Ji, V. Samper, Y. Chen, C.K. Heng, T.M. Lim, L. Yobas, Biomed Microdevices. 10(2), 251 (2008)CrossRefGoogle Scholar
  23. B. Jung, R. Bharadwaj, J.G. Santiago, Anal Chem. 78(7), 2319 (2006)CrossRefGoogle Scholar
  24. G.V. Kaigala, R.J. Huskins, J. Preiksaitis, X.L. Pang, L.M. Pilarski, C.J. Backhouse, Electrophoresis 27(19), 3753 (2006)CrossRefGoogle Scholar
  25. A.A. Kelton, W.P. Waters, D.G. Shrunk, M.L. Bell, Integrated fluid manipulator US4284602A. Immutron, Newport Beach (1981)Google Scholar
  26. K. Kneipp, H. Kneipp, V.B. Kartha, R. Manoharan, G. Deinum, I. Itzkan, R.R. Dasari, M.S. Feld, Phys Rev E. 57(6), R6281 (1998)CrossRefGoogle Scholar
  27. E.T. Lagally, I. Medintz, R.A. Mathies, Anal Chem. 73(3), 565 (2001)CrossRefGoogle Scholar
  28. E.T. Lagally, J.R. Scherer, R.G. Blazej, N.M. Toriello, B.A. Diep, M. Ramchandani, G.F. Sensabaugh, L.W. Riley, R.A. Mathies, Anal Chem. 76(11), 3162 (2004)CrossRefGoogle Scholar
  29. E.T. Lagally, S.H. Lee, H.T. Soh, Lab on a chip 5(10), 1053 (2005)CrossRefGoogle Scholar
  30. R.G. Langlois, F.P. Milanovich, B.W. Colston, S.B. Brown, D.A. Masquelier, R.P. Mariella, K. Venkateswaran, System for autonomous monitoring of bioagents, EP1576353 (US20040038385A1) (2003)Google Scholar
  31. D.A. Lewis, J.F. Tonn, S.L. Kaufman, G.W. Greenlees, Phys Rev A. 19(4), 1580 (1979)CrossRefGoogle Scholar
  32. R.H. Liu, J.N. Yang, R. Lenigk, J. Bonanno, P. Grodzinski, Anal Chem. 76(7), 1824 (2004)CrossRefGoogle Scholar
  33. A. Manz, N. Graber, H.M. Widmer, Sens Actuators B-Chem. 1(1–6), 244 (1990)CrossRefGoogle Scholar
  34. M.T. McBride, LLNL Sci Technol Rev. 4–9 (2006)Google Scholar
  35. M.T. McBride, D. Masquelier, B.J. Hindson, A.J. Makarewicz, S. Brown, K. Burris, T. Metz, R.G. Langlois, K.W. Tsang, R. Bryan, D.A. Anderson, K.S. Venkateswaran, F.P. Milanovich, B.W. Colston Jr, Anal Chem. 75(20), 5293 (2003)CrossRefGoogle Scholar
  36. W.R. Moyle, C. Lin, R.L. Corson, P.H. Ehrlich, Mol Immunol. 20(4), 439 (1983)CrossRefGoogle Scholar
  37. D.C. Nguyen, R.A. Keller, J.H. Jett, J.C. Martin, Anal Chem. 59(17), 2158 (1987)CrossRefGoogle Scholar
  38. M.A. Northrup, J.R.P. Mariella, A.V. Carrano, J.W. Balch, Silicon-based sleeve devices for chemical reactions US5589136A. Regents of the University of California, Oakland (1996)Google Scholar
  39. W.D. Odell, J. Griffin, New Eng J Med. 317(27), 1688 (1987)Google Scholar
  40. E.A. Ottesen, J.W. Hong, S.R. Quake, J.R. Leadbetter, Science. 314(5804), 1464 (2006)CrossRefGoogle Scholar
  41. G. Palacios, P.-L. Quan, O. Jabado, S. Conlan, D. Hirschberg, Y. Liu et al., Emerg Infect Dis. 13(1), 73 (2007)CrossRefGoogle Scholar
  42. K.E. Petersen, W.A. McMillan, T.A. Kovacs, M.A. Northrup, L.A. Christel, F. Pourahmadi, Biomed Microdev. 1(1), 71 (1998)CrossRefGoogle Scholar
  43. F. Petersson, A. Nilsson, C. Holm, H. Jonsson, T. Laurell, Lab on a chip 5(1), 20 (2005)CrossRefGoogle Scholar
  44. R. Pethig, G.H. Markx, Trends Biotechnol. 15(10), 426 (1997)CrossRefGoogle Scholar
  45. S.D. Poisson, Treatise (Ecole Polytechnique, Paris, 1837)Google Scholar
  46. M. Poitevin, A. Morin, J.M. Busnel, S. Descroix, M.C. Hennion, G. Peltre, J Chromatogr A 1155(2), 230–236 (2007)CrossRefGoogle Scholar
  47. S. Raja, J. Ching, L.Q. Xi, S.J. Hughes, R. Chang, W. Wong, W. McMillan, W.E. Gooding, K.S. McCarty, M. Chestney, J.D. Luketich, T.E. Godfrey, Clin Chem. 51(5), 882 (2005)CrossRefGoogle Scholar
  48. J.M. Ramsey, Nature Biotechnol. 17(11), 1061 (1999)CrossRefGoogle Scholar
  49. P.A. Rota, M.S. Oberste, S.S. Monroe, W.A. Nix, R. Campagnoli, J.P. Icenogle, S. Penaranda, B. Bankamp, K. Maher, M.H. Chen, S. Tong, A. Tamin, L. Lowe, M. Frace, J.L. DeRisi, Q. Chen, D. Wang, D.D. Erdman, T.C. Peret, C. Burns, T.G. Ksiazek, P.E. Rollin, A. Sanchez, S. Liffick, B. Holloway, J. Limor, K. McCaustland, M. Olsen-Rasmussen, R. Fouchier, S. Gunther, A.D. Osterhaus, C. Drosten, M.A. Pallansch, L.J. Anderson, W.J. Bellini, Science. 300(5624), 1394 (2003)CrossRefGoogle Scholar
  50. R.K. Saiki, D.H. Gelfand, S. Stoffel, S.J. Scharf, R. Higuchi, G.T. Horn, K.B. Mullis, H.A. Erlich, Science. 239(4839), 487 (1988)CrossRefGoogle Scholar
  51. A. Sanchez, C.F. Davis Jr., G.M. Elchinger, A. Javan, 29th Annual Symposium on Frequency control. 1975, 328–329 (1975)Google Scholar
  52. P.N. Schnipelsky, L.J. Seaberg, C.C. Hinckley, J.A. Wellman, W.H. Donish, J.B. Findlay, Containment cuvette for PCR and method of use US5229297A. Eastman Kodak, Rochester (1993)Google Scholar
  53. J.G. Shackman, M.S. Munson, D. Ross, Anal Bioanal Chem. 387(1), 155 (2007)CrossRefGoogle Scholar
  54. J.A. Snyder, S. Haymond, C.A. Parvin, A.M. Gronowski, D.G. Grenache, Clin Chem. 51(10), 1830 (2005)CrossRefGoogle Scholar
  55. J.C. Stachowiak, E.E. Shugard, B.P. Mosier, R.F. Renzi, P.F. Caton, S.M. Ferko, J.L. Van de Vreugde, D.D. Yee, B.L. Haroldsen, V.A. VanderNoot, Anal Chem. 79(15), 5763 (2007)CrossRefGoogle Scholar
  56. E.M. Starke, J.C. Smoot, J.-H. Wu, W.-T. Liu, D. Chandler, D.A. Stahl, Ann NY Acad Sci. 1098(1), 345 (2007)CrossRefGoogle Scholar
  57. S. Sundaresh, D.L. Doolan, S. Hirst, Y. Mu, B. Unal, D.H. Davies, P.L. Felgner, P. Baldi, Bioinformatics (Oxford). 22(14), 1760 (2006)CrossRefGoogle Scholar
  58. T.J. Torok, R.V. Tauxe, R.P. Wise, J.R. Livengood, R. Sokolow, S. Mauvais, K.A. Birkness, M.R. Skeels, J.M. Horan, L.R. Foster, JAMA. 278(5), 389 (1997)CrossRefGoogle Scholar
  59. USFDA, Foodborne pathogenic microorganisms and natural toxins handbook, Accessed at (2007)
  60. M.A. Vandilla, T.T. Trujillo, P.F. Mullaney, J.R. Coulter, Science. 163(3872), 1213 (1969)CrossRefGoogle Scholar
  61. J. Vitko Jr., ed. by . Committee on Materials and Manufacturing Processes for Advanced Sensors, National Research Council. National Academies, Washington, D.C. (2001) Copyright 2005, ISBN 0-309-0957XGoogle Scholar
  62. D. Wang, A. Urisman, Y.T. Liu, M. Springer, T.G. Ksiazek, D.D. Erdman, E.R. Mardis, M. Hickenbotham, V. Magrini, J. Eldred, J.P. Latreille, R.K. Wilson, D. Ganem, J.L. DeRisi, Plos Biology. 1(2), 257 (2003)CrossRefGoogle Scholar
  63. Z. Wang, L.T. Daum, G.J. Vora, D. Metzgar, E.A. Walter, L.C. Canas, A.P. Malanoski, B.C. Lin, D.A. Stenger, Emerg Infect Dis. 12(4), 638 (2006)Google Scholar
  64. P.K. Wong, T.H. Wang, J.H. Deval, C.M. Ho, IEEE-ASME Transact Mechatron. 9(2), 366 (2004)CrossRefGoogle Scholar
  65. J.M. Yang, J. Bell, Y. Huang, M. Tirado, D. Thomas, A.H. Forster, R.W. Haigis, P.D. Swanson, R.B. Wallace, B. Martinsons, M. Krihak, Biosens Bioelectron. 17(6–7), 605 (2002)CrossRefGoogle Scholar
  66. N.V. Zaytseva, R.A. Montagna, A.J. Baeumner, Anal Chem. 77(23), 7520 (2005)CrossRefGoogle Scholar
  67. X. Zhou, D. Liu, R. Zhong, Z. Dai, D. Wu, H. Wang, Y. Du, Z. Xia, L. Zhang, X. Mei, B. Lin, Electrophoresis. 25(17), 3032 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Lawrence Livermore National LaboratoryLivermoreUSA

Personalised recommendations