Biomedical Microdevices

, Volume 10, Issue 5, pp 631–638

Microfluidic high viability neural cell separation using viscoelastically tuned hydrodynamic spreading

  • Zhigang Wu
  • Klas Hjort
  • Grzegorz Wicher
  • Åsa Fex Svenningsen
Article

Abstract

A high viability microfluidic cell separation technique of high throughput was demonstrated based on size difference continuous mode hydrodynamic spreading with viscoelastic tuning. Using water with fluorescent dye as sample fluid and in parallel introducing as elution a viscoelastic biocompatible polymer solution of alginic sodium, the spreading behavior was investigated at different polymer concentrations and flow rates. Particle separation was studied in the same detail for 9.9 μm and 1.9 μm latex beads. Using buffered aqueous solutions and further surface treatments to protect from cell adhesion, separation between neuron cells and glial cells from rat’s spine cord was demonstrated and compared to the separation of latex particles of 20 and 4.6 μm sizes. High relative viability (above 90%) of neural cells was demonstrated compared the reference cells of the same batch.

Keywords

Microfluidics Viscoelastic Neural cell Separation 

References

  1. M.T. Blom, E. Chmela, R.E. Oosterbroek, R. Tojssen, A. van den Berg, Anal. Chem. 75, 6761 (2003)CrossRefGoogle Scholar
  2. T. Braschler, R. Johann, M. Heule, L. Metref, P. Renaud, Lab. Chip. 5, 553 (2005)CrossRefGoogle Scholar
  3. Y.C. Chang, W.C. Shyu, H. Li, Cell. Transplant. 16, 171 (2007)Google Scholar
  4. S. Choi, S. Song, C. Choi, J.-K. Park, Lab. Chip. 7, 1532 (2007)CrossRefGoogle Scholar
  5. S.F. Davies, J. Hood, A. Thomas, B.A. Bunnell, Stem. Cells. Dev. Apr. 15, 191 (2006)CrossRefGoogle Scholar
  6. S.B. Devarakonda, J. Han, C.H. Ahn et al., Microfluid. Nanofluid. 3, 391 (2007)CrossRefGoogle Scholar
  7. P.S. Dittrich, A. Manz, Nat. Rev. Drug. Discov. 5, 210 (2006)CrossRefGoogle Scholar
  8. P.S. Dittrich, P. Schwille, Anal. Chem. 75, 5767 (2003)CrossRefGoogle Scholar
  9. J. El-Ali, P.K. Sorger, K.F. Jensen, Nature 442, 403 (2006)CrossRefGoogle Scholar
  10. Å. Fex Svenningsen, W.S. Shan, D.R. Colman, L. Pedraza, J. Neurosci. Res. 72, 565 (2003)CrossRefGoogle Scholar
  11. A.Y. Fu, C. Spence, A. Scherer, F.H. Arnold, S.R. Quake, Nat. Biotechnol. 17, 1109 (1999)CrossRefGoogle Scholar
  12. H.Y. Gan, Y.C. Lam, N.T. Nguyen, Appl. Phys. Lett. 88, 224103 (2006)CrossRefGoogle Scholar
  13. J.C. Giddins, Science 260, 1456 (1993)CrossRefGoogle Scholar
  14. E. Hedlund, J. Pruszak, A. Ferree, A. Vinuela, S. Hong, O. Isacson, K.S. Kim, Stem Cells 25, 1126–35 (2007)CrossRefGoogle Scholar
  15. L.R. Huang, E.C. Cox, R.H. Austin, J.C. Sturm, Science 304, 987 (2004)CrossRefGoogle Scholar
  16. D. Huh, A.H. Tkaczyk, J.H. Bahng, Y. Chang, H.-H. Wei, J.B. Grotberg, C.-J. Kim, K. Kurabayashi, S. Takayama, J. Am. Chem. Soc. 125, 14678 (2003)CrossRefGoogle Scholar
  17. X.Y. Jiang, S.L. Fu, B.M. Nie, Y. Li, L. Lin, L. Yin, Y.X. Wang, P.H. Lu, X.M. Xu, J. Neurosci. Methods 158, 13–8 (2006)CrossRefGoogle Scholar
  18. Y. Kang, D. Li, S.A. Kalams, J.E. Eid, Biomedical Microdevices (in press, DOI 10.1007/s10544-007-9130-y, 2007)
  19. J.A. Korecka, J. Verhaagen, E.M. Hol, Regen. Med. 2, 425 (2007)CrossRefGoogle Scholar
  20. K. Kurabayashi, S. Takayama, J. Am. Chem. Soc. 125, 14678 (2003)CrossRefGoogle Scholar
  21. A.M. Leshansky, A. Bransky, N. Korin et al., Phys. Rew. Lett 98, 234501 (2007)CrossRefGoogle Scholar
  22. N. Pamme, Lab. Chip. 7, 1644 (2007)CrossRefGoogle Scholar
  23. N. Pamme, C. Wilhelm, Lab. Chip. 6, 974 (2006)CrossRefGoogle Scholar
  24. F. Petersson, A. Nilsson, C. Holm, H. Jonsson, T. Laurell, Lab. Chip. 5, 20 (2005)CrossRefGoogle Scholar
  25. J.C. Sanders, M.C. Breadmore, Y.C. Kwok, K.M. Horsman, J.P. Landers, Anal. Chem. 75, 986 (2003)CrossRefGoogle Scholar
  26. T.M. Squires, S.R. Quake, Rev. Mod. Phys. 77, 977 (2005)CrossRefGoogle Scholar
  27. J. Takagi, M. Yamada, M. Yasuda, M. Seki, Lab. Chip 5, 778 (2005)CrossRefGoogle Scholar
  28. W.J. Wang, X.H. Wang, Q.L. Feng, F.Z. Cui, Y.X. Xu, X.H. Song, J. Bioact. Compat. Pol. 18, 249 (2003)CrossRefGoogle Scholar
  29. Z.G. Wu, N.T. Nguyen, Sensors Actuators B 107, 965 (2005)CrossRefGoogle Scholar
  30. Z.G. Wu, N.T. Nguyen, X.Y. Huang, J. Micromech. Microeng. 14, 604 (2004)CrossRefGoogle Scholar
  31. Z.G. Wu, A.Q. Liu, K. Hjort, J. Micromech. Microeng. 17, 1992 (2007)CrossRefGoogle Scholar
  32. Y. Xia, G.M. Whitesides, Annu. Rev. Mater. Sci. 28, 153 (1998)CrossRefGoogle Scholar
  33. M. Yamada, M. Nakashima, M. Seki, Anal. Chem. 76, 5465 (2004)CrossRefGoogle Scholar
  34. M. Yamada, K. Kano, Y. Tsuda, J. Kobayashi, M. Yamato, M. Seki, T. Okano, Biomed. Microdev. 9, 637 (2007)CrossRefGoogle Scholar
  35. S. Yang, A. Ündar, J.D. Zahn, Lab. Chip. 6, 871 (2006)CrossRefGoogle Scholar
  36. Y.H. Zhang, R.W. Barber, D.R. Emerson, Curr. Anal. Chem. 1, 345 (2005)MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Zhigang Wu
    • 1
  • Klas Hjort
    • 1
  • Grzegorz Wicher
    • 2
  • Åsa Fex Svenningsen
    • 2
  1. 1.Department of Engineering Sciences, The Ångström LaboratoryUppsala UniversityUppsalaSweden
  2. 2.Department of Neuroscience, The Biomedical CenterUppsala UniversityUppsalaSweden

Personalised recommendations