Biomedical Microdevices

, Volume 10, Issue 4, pp 489–498 | Cite as

Microfluidic devices for studying growth and detachment of Staphylococcus epidermidis biofilms

  • Joung-Hyun Lee
  • Jeffrey B. Kaplan
  • Woo Y. LeeEmail author


Microfluidic devices were used to study the influences of hydrodynamics of local microenvironments on Staphylococcus epidermidis (S. epidermidis) biofilm formation and the effects of a poly(β-1,6-N-acetyl glucosamine)-hydrolyzing enzyme (dispersin B) and/or an antibiotic (rifampicin) on the detachment of the biofilm. Elongated, monolayered biofilm morphologies were observed at high flow velocity and fluid shear locations whereas large clump-like, multilayered biofilm structures were produced at low flow velocity and fluid shear locations. Upon dispersin B treatment, most of the biofilm was detached from the microchannel surface. However, a trace amount of bacterial cells could not be removed from corner locations most likely due to the insufficient wall shear stress of the fluid at these locations. Dispersin B or rifampicin treatment was effective in delaying the dispersal behavior of bacterial cells, but could not completely remove the biofilm. Combined dynamic delivery of dispersin B and rifampicin was found to be effective for complete removal of the S. epidermidis biofilm.


Poly(dimethylsiloxane) (PDMS) Microfluidics Microenvironment Staphylococcus epidermidis Dispersin B Rifampicin Biofilms 



We thank Dr. Dongying Qian, Stevens Institute of Technology for performing the CFD work of device I. We also acknowledge fabrication of device II by the Stanford Microfluidics Foundry in the Department of Bioengineering, Stanford University, CA.


  1. F. Alejandro Bonilla, N. Kleinfelter, J.H. Cushman, Adv. Water Resour 30, 1680–1695 (2007)CrossRefGoogle Scholar
  2. J. Atencia, D.J. Beebe, Nature 437, 648–655 (2005)CrossRefGoogle Scholar
  3. P. Chaignon, I. Sadovskaya, C. Ragunah, N. Ramasubbu, J.B. Kaplan, S. Jabbouri, Appl. Microbiol. Biotechnol. 75, 125–132 (2007)CrossRefGoogle Scholar
  4. C.S. Chen, M. Mrksich, S. Huang, G.M. Whitesides, D.E. Ingber, Science 276, 1425–1428 (1997)CrossRefGoogle Scholar
  5. G. Donelli, I. Francolini, D. Romoli, E. Guaglianone, A. Piozzi, C. Ragunath, J.B. Kaplan, Antimicrob. Agents Chemother 51, 2733–2740 (2007)CrossRefGoogle Scholar
  6. B.C. Dunsmore, A. Jacobsen, L. Hall-Stoodley, C.J. Bass, H.M. Lappin-Scott, P. Stoodley, J. Ind. Microbiol. Biotech 29, 347–353 (2002)CrossRefGoogle Scholar
  7. J. El-Ali, P.K. Sorger, K.F. Jensen, Nature 442, 403–411 (2006)CrossRefGoogle Scholar
  8. F. Furno, K.S. Morley, B. Wong, B.L. Sharp, P.L. Arnold, S.M. Howdle, R. Bayston, P.D. Brown, P.D. Winship, H.J. Reid, J. Antimicrob. Chemother 54, 1019–1024 (2004)CrossRefGoogle Scholar
  9. N. Futai, W. Gu, J.W. Song, S. Takayama, Lab on a Chip—Miniaturisation for Chemistry and Biology 6, 149–154 (2006)Google Scholar
  10. L. Griffith, K. Domansky, A. Sivaraman, N.C. Tedford, R.A. Aranout, D.B. Stolz, The 8th International Conference on Miniaturized Systems for Chemistry and Life Sciences 2, 154–158 (2004)Google Scholar
  11. L. Hall-Stoodley, J.W. Costerton, P. Stoodley, Nat. Rev. Microbiol 2, 95–108 (2004)CrossRefGoogle Scholar
  12. L.G. Harris, R.G. Richards, Injury 37(Suppl 2), S3–S14 (2006)CrossRefGoogle Scholar
  13. D. Huh, Y. Kamotani, J.B. Grothberg, S. Takayama, The 8th International Conference on Miniaturized Systems for Chemistry and Life Sciences 2, 282–284 (2004)Google Scholar
  14. P.J. Hung, P.J. Lee, P. Sabounchi, N. Aghdam, R. Lin, L.P. Lee, Lab on a Chip—Miniaturisation for Chemistry and Biology 5, 44–48 (2005)Google Scholar
  15. J.B. Jupiter, A.W. Karchmer, J.D. Lowell, W.H. Harris, J Bone Jt Surg A 63, 194–200 (1981)Google Scholar
  16. J.B. Kaplan, D.H. Fine, Appl. Environ. Microbiol 68, 4943–4950 (2002)CrossRefGoogle Scholar
  17. J.B. Kaplan, M.F. Meyenhofer, D.H. Fine, J. Bacteriol 185, 1399–1404 (2003)CrossRefGoogle Scholar
  18. J.B. Kaplan, C. Ragunath, K. Velliyagounder, D.H. Fine, N. Ramasubbu, Antimicrob. Agents Chemother 48, 2633–2636 (2004a)CrossRefGoogle Scholar
  19. J.B. Kaplan, K. Velliyagounder, C. Ragunath, H. Rohde, D. Mack, J.K.M. Knobloch, N. Ramasubbu, J. Bacteriol 186, 8213–8220 (2004b)CrossRefGoogle Scholar
  20. A. Khademhosseini, K.Y. Suh, J.M. Yang, G. Eng, J. Yeh, S. Levenberg, R. Langer, Biomaterials 25, 3583–3592 (2004)CrossRefGoogle Scholar
  21. E. Leclerc, B. David, L. Griscom, B. Lepioufle, T. Fujii, P. Layrolle, C. Legallaisa, Biomaterials 27, 586–595 (2006)CrossRefGoogle Scholar
  22. J.X. Li, J. Wang, L.R. Shen, Z.J. Xu, P. Li, G.J. Wan, N. Huang, Surf. Coat. Technol. 201, 8155–8159 (2007)Google Scholar
  23. T.J. Marrie, J.W. Costerton, J. Clin. Microbiol 19, 687–693 (1984)Google Scholar
  24. J. Melin, S.R. Quake, Annu. Rev. Biophys. Biomol. Struct 36, 213–231 (2007)CrossRefGoogle Scholar
  25. G. Peters, R. Locci, G. Pulverer, Zentralblatt fur Bakteriologie Mikrobiologie und Hygiene—Abt. 1 Orig. B Hygiene 173, 293–299 (1981)Google Scholar
  26. N. Ramasubbu, L.M. Thomas, C. Ragunath, J.B. Kaplan, J. Mol. Biol 349, 475–486 (2005)CrossRefGoogle Scholar
  27. B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons, Biomaterials Science: An Introduction to Materials in Medicine, 2nd edn. (Elsevier, Amsterdam, 2004)Google Scholar
  28. S. Raty, E.M. Walters, J. Davis, H. Zeringue, D.J. Beebe, S.L. Rodriguez-Zas, M.B. Wheeler, Lab on a Chip—Miniaturisation for Chemistry and Biology 4, 186–190 (2004)Google Scholar
  29. K. Reddy, J.M. Ross, Infect. Immun 69, 3472–3475 (2001)CrossRefGoogle Scholar
  30. R. Saginur, M.S. Denis, W. Ferris, S.D. Aaron, F. Chan, C. Lee, K. Ramotar, Antimicrob. Agents Chemother. 50, 55–61 (2006)CrossRefGoogle Scholar
  31. F.R. Sattler, J.B. Foderaro, R.C. Aber, Infect. Control 5, 279–283 (1984)Google Scholar
  32. P. Stoodley, I. Dodds, J.D. Boyle, H.M. Lappin-Scott, J. Appl. Microbiol. Symp. Suppl. 85, 195–285 (1999)Google Scholar
  33. P. Stoodley, R. Cargo, C.J. Rupp, S. Wilson, I. Klapper, J. Ind. Microbiol. Biotech 29, 361–367 (2002)CrossRefGoogle Scholar
  34. S. Takayama, J.C. McDonald, E. Ostuni, M.N. Liang, P.J.A. Kenis, R.F. Ismagilov, G.M. Whitesides, Proc. Natl. Acad. Sci. U.S.A 96, 5545–5548 (1999)CrossRefGoogle Scholar
  35. M.A. Unger, H.P. Chou, T. Thorsen, A. Scherer, S.R. Quake, Science 288, 113–116 (2000)CrossRefGoogle Scholar
  36. D.B. Weibel, W.R. DiLuzio, G.M. Whitesides, Nat. Rev. Microbiol 5, 209–218 (2007)CrossRefGoogle Scholar
  37. G.M. Whitesides, Nature 442, 368–373 (2006)CrossRefGoogle Scholar
  38. A.F. Widmer, Clin. Infect. Dis. 33 (5 Suppl. 2) S94–S106 (2001)Google Scholar
  39. Q. Zhao, Y. Liu, J. Food Eng 72, 266–272 (2006)CrossRefGoogle Scholar
  40. Z. Zheng, P.S. Stewart, Antimicrob. Agents Chemother 46, 900–903 (2002)CrossRefGoogle Scholar
  41. W. Zimmerli, A. Trampuz, P.E. Ochsner, N. Engl. J. Med 351, 1645–1654 (2004)CrossRefGoogle Scholar
  42. W. Zimmerli, Best Pract Res Clin Rheumatol 20, 1045–1063 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Joung-Hyun Lee
    • 1
  • Jeffrey B. Kaplan
    • 2
  • Woo Y. Lee
    • 1
    Email author
  1. 1.New Jersey Center for MicroChemical Systems, Department of Chemical, Biomedical and Materials EngineeringStevens Institute of TechnologyHobokenUSA
  2. 2.Department of Oral BiologyNew Jersey Dental SchoolNewarkUSA

Personalised recommendations