Biomedical Microdevices

, Volume 10, Issue 3, pp 437–446

MEMS-based fabrication and microfluidic analysis of three-dimensional perfusion systems

  • Yoonsu Choi
  • Jelena Vukasinovic
  • Ari Glezer
  • Mark G. Allen
Article

Abstract

This paper describes fabrication and fluidic characterization of 3D microperfusion systems that could extend the viability of high-density 3D cultures in vitro. High-aspect ratio towers serve as 3D scaffolds to support the cultures and contain injection sites for interstitial delivery of nutrients, drugs, and other reagents. Hollow and solid-top tower arrays with laser ablated side-ports were fabricated using SU-8. Appropriate sizing of fluidic ports improves the control of agent delivery. Microfluidic perfusion can be used to continuously deliver equal amount of nutrients through all ports, or more media can be delivered at some ports than the others, thus allowing spatial control of steady concentration gradients throughout the culture thickness. The induced 3D flow around towers was validated using micro particle image velocimetry. Based on experimental data, the flow rates from the characteristic ports were found to follow the analytical predictions.

Keywords

Three-dimensional culture systems Interstitial microfluidic perfusion systems Micro particle image velocimetry SU-8 

References

  1. R. Baviere, F. Ayela, S. Le Person, M. Favre-Marinet, Phys. Fluids 17, 098105.1 (2005)CrossRefGoogle Scholar
  2. J. Bolinder, Technical report, ISSN 0282–1990 (1999)Google Scholar
  3. D.K. Cullen, J. Vukasinovic, A. Glezer, M.C. LaPlaca, J. Neural Eng. 4, 159 (2007)CrossRefGoogle Scholar
  4. J.W. Fawcett, R.A. Barker, S.B. Dunnett, Exp. Brain. Res. 106, 275 (1995)CrossRefGoogle Scholar
  5. P. Griss, G. Stemme, J. Microelectromech. Syst. 12, 296 (2003)CrossRefGoogle Scholar
  6. M. Hahn, T. Glass, J. Koke, Cytobios 102, 7 (2000)Google Scholar
  7. C.M. Ho, Y.C. Tai, Annu. Rev.Fluid Mech. 30, 579 (1998)CrossRefGoogle Scholar
  8. E. Leclerc, Y. Sakai, T. Fujii, Biomed. Microdev. 5, 109 (2003)CrossRefGoogle Scholar
  9. C.D. Meinhart, S.T. Wereley, J.G. Santiago, J. Fluids Eng. 122, 285 (2000)CrossRefGoogle Scholar
  10. W. Michaeli, C. Ziegmann, Microsyst. Technol. 9, 427 (2003)CrossRefGoogle Scholar
  11. B.R. Munson, D.F. Young, T.H. Okiishi, Fundamentals of Fluid Mechanics, 3rd edn. (Wiley, Inc., 1998)Google Scholar
  12. M.G. Olsen, R.J. Adrian, Opt. Laser Technol. 32, 621 (2000)CrossRefGoogle Scholar
  13. D.J. Phares, G.T. Smedley, Phys. Fluids 16, 1267 (2004)CrossRefGoogle Scholar
  14. S.M. Potter, T.B. DeMarse, J. Neurosci. Methods 11, 0, 17 (2001)CrossRefGoogle Scholar
  15. J.G. Santiago, S.T. Wereley, C.D. Meinhart, D.J. Beebee, R.J. Adrian, Exp. Fluids 25, 316 (1998)CrossRefGoogle Scholar
  16. J.G. Santiago, R.J. Adrian, Exp. Fluids 36, 741 (2004)CrossRefGoogle Scholar
  17. K.V. Sharp, R.J. Adrian, J.G. Santiago, J.I. Molho, Liquid flow in microchannels, in MEMS Handbook, ed. by M. Gad-el-Hak. (CRP Press, 2001)Google Scholar
  18. A. Tourovskaia, X. Figueroa-Masot, A. Folch, Lab Chip 1, 14 (2005)CrossRefGoogle Scholar
  19. J. Vukasinovic, A. Glezer, Bull. Am. Phys. Soc. 48, 192 (2003)Google Scholar
  20. J. Vukasinovic, A. Glezer, Proc. ASME IMECE, (Anaheim, 2004)Google Scholar
  21. J. Vukasinovic, A. Glezer, Proc. ASME Summer Bioeng. (Amelia Island, 2006)Google Scholar
  22. S.T. Wereley, C.D. Meinhart, Micron resolution particle image velocimetry, in Diagnostic techniques in microfluidics, ed. by K. Breuer. (Springer Verlag, New York, 2004)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Yoonsu Choi
    • 1
  • Jelena Vukasinovic
    • 2
  • Ari Glezer
    • 2
  • Mark G. Allen
    • 1
  1. 1.School of Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations