Biomedical Microdevices

, Volume 10, Issue 4, pp 469–478

Design of an implantable active microport system for patient specific drug release

  • A. Geipel
  • F. Goldschmidtboeing
  • P. Jantscheff
  • N. Esser
  • U. Massing
  • P. Woias
Article

Abstract

We present a novel concept of an implantable active microport based on micro technology that incorporates a high-resolution volumetric dosing unit and a drug reservoir into the space of a conventional subcutaneous port. The controlled release of small drug volumes from such an “active microport” is crucial e.g. for innovative methods in cancer treatment or pain therapy. Our microport system delivers a flow rate in the range of 10–1,000 μl/h and enables a patient-specific release profile. The core of our device is a two-stage piezoelectric micropump. It features a backpressure-independent volumetric dosing capability i.e. a stable flow rate is ensured up to a backpressure of 30 kPa. The stroke volume and hence the resolution of the mircopump is voltage controlled and can be preset between 10 and 200 nl. A miniaturized high-performance electronic control unit enables freely programmable dosing profiles. This electronic circuit is optimized for both energy consumption and weight which are both essential for a portable device. The data of an implemented pressure sensor are used to permanently monitor the dosing process and to detect a potential catheter occlusion. A polyurethane soft lithography process is introduced for the fabrication of the prototype. Therewith, a compact multilayer system has been developed which measures only 50 × 35 × 25 mm3.

Keywords

Drug delivery Infusion systems Micropump Electronic medical devices 

References

  1. G.J. Barendsen, J. van den Berg, Cardiovasc. Res. 10, 206–213 (1976)CrossRefGoogle Scholar
  2. G. Bocci, K.C. Nicolaou, R.S. Kerbel, Cancer Res. 62, 6938–6943 (2002)Google Scholar
  3. Codman & Shurtleff, Inc., www.codmanjnj.com (2007)
  4. Debiotech S.A., Lausanne, Switzerland. www.debiotech.com (2007)
  5. T.A. Desai, D.J. Hansford, L. Kulinsky, A.H. Nashat, G. Rasi, J. Tu, Y. Wang, M. Zhang, M. Ferrari, Biomed. Microdevices. 2, 11–40 (1999)CrossRefGoogle Scholar
  6. Disetronic Medical Systems AG, Burgdorf, Switzerland. www.disetronic.com (2007)
  7. A. Doll, F. Goldschmidtböeing, P. Woias, Proceedings of the IEEE MEMS 2004 (Maastricht, Netherlands (2004), pp. 665–668Google Scholar
  8. J. Drevs, J. Fakler, S. Eisele, M. Medinger, G. Bing, N. Esser, D. Marme, C. Unger, Anticancer Res. 24, 1759–1763 (2004)Google Scholar
  9. Durect Corporation, www.durect.com (2007)
  10. Eksigent Technologies, LLC, Dublin, CA (2008), www.eksigent.com. Accessed 2007
  11. A.T. Evans, J.M. Park, G.F. Nellis, S.A. Klein, J.R. Feller, L. Salerno, Y.B. Gianchandani, Proceeding of the Transducers '07 (Lyon, France (2007), pp. 359–362Google Scholar
  12. L.A. Ferrara, M.L. Fasano, S. Soro, E. Farinaro, E. Celentano, M. Mancini, Int. J. Clin. Pharmacol. Res. 7, 463–468 (1987)Google Scholar
  13. M. Ferrari, Nat. Rev. Cancer. 5, 161–170 (2005)CrossRefGoogle Scholar
  14. Freescale Semiconductors, Inc., Austin, TX, USA. www.freescale.com (2007)
  15. A. Geipel, A. Doll, P. Jantscheff, N. Esser, U. Massing, P. Woias, F. Goldschmidtboeing, J. Micromechanics Microengineering 17, 949–959 (2007a)CrossRefGoogle Scholar
  16. A. Geipel, F. Goldschmidtboeing, A. Doll, C. Farhat, P. Jantscheff, N. Esser, U. Massing, P. Woias, IASTED International Conference on Biomedical Engineering (Innsbruck, Austria (2007b), pp. 272–276Google Scholar
  17. T. Goettsche, J. Kohnle, M. Willmann, H. Ernst, S. Messner, R. Steger, M. Storz, W. Lang, R. Zengerle, H. Sandmaier, Proceeding of the Transducers '03 (Boston, USA (2003), pp. 623–626Google Scholar
  18. F. Goldschmidtböeing, A. Doll, A. Geipel, M. Wischke, P. Woias, Proceeding of the FEDSM2006 (Miami, USA (2006), pp. 1–9Google Scholar
  19. D. Hanahan, G. Bergers, E. Bergsland, J. Clin. Invest. 105, 1045–1047 (2000)CrossRefGoogle Scholar
  20. J.N. de Hoon, K.A. Poppe, H.H. Thijssen, H.A. Struijker-Boudier, L.M. Van Bortel, Br. J. Clin. Pharmacol. 52, 45–51 (2001)CrossRefGoogle Scholar
  21. D.A. LaVan, T. McGuire, R. Langer, Nat. Biotechnol. 21, 1184(2003)CrossRefGoogle Scholar
  22. E. Leo, R. Cameroni, F. Forni, Int. J. Pharm. 180, 23–30 (1999)CrossRefGoogle Scholar
  23. F. Levi, Cancer Causes Control. 17, 611–621 (2006)CrossRefGoogle Scholar
  24. J.M. Lippmann, A.P. Pisano, Proceeding of the IEEE MEMS '06 (Istanbul, Turkey (2006), pp. 262–265Google Scholar
  25. D. Maillefer, S. Gamper, B. Frehner, P. Balmer, H. van Lintel, P. Renaud, Proceeding of the. IEEE MEMS '01 (Interlaken, Switzerland (2001), pp. 413–417Google Scholar
  26. Medtronic MiniMed, Northridge, CA, USA. www.minimed.com (2007)
  27. Medtronic, Inc., Minneapolis, MN, USA. www.medtronic.com (2007)
  28. MicroCHIPS, Inc., Bedford, MA, USA (2007), www.mchips.com. Accessed 2007
  29. M. Moser, M. Fruhwirth, R. Penter, R. Winker, Cancer Causes Control. 17, 591–599 (2006)CrossRefGoogle Scholar
  30. R. Muller, C. Keck, J. Biotechnol. 12, 151–170 (2004)CrossRefGoogle Scholar
  31. D. Papegeorgiou, S.C. Bledsoe, M. Gulari, J.F. Hetke, D.J. Anderson, K.D. Wise, Proceeding of the IEEE MEMS '01 (Interlaken, Switzerland (2001), pp. 212–215Google Scholar
  32. E.R. Parker, M.P. Rao, K.L. Turner, N.C. MacDonald, Proceeding of the IEEE MEMS '06 (Istanbul, Turkey (2006), pp. 498–501Google Scholar
  33. F. Pastorino, C. Brignole, D. Marimpietri, M. Cilli, C. Gambini, D. Ribatti, R. Longhi, T.M. Allen, A. Corti, M. Ponzoni, Cancer Res. 63, 7400–7409 (2003)Google Scholar
  34. Pegasus GmbH, Kiel, Germany (2008), www.pegasus-gmbh.com. Accessed 2007
  35. R.M. Rossen, E.L. Alderman, D.C. Harrison, Br. Heart J. 38, 695–700 (1976)CrossRefGoogle Scholar
  36. N. Roxhed, P. Griss, G. Stemme, Proceeding of the Transducers '05 (Seoul, Korea (2005), pp. 213–216Google Scholar
  37. A.C.R. Grayson, I.S. Choi, B.M. Tyler, P.P. Wang, H. Brem, M.J. Cima, R. Langer, Nat. Mater. 2, 767–772 (2003)CrossRefGoogle Scholar
  38. RoweMed, Parchim, Germany. www.rowemed.de (2007)
  39. J.T. Santini, M.J. Cima, R. Langer, Nature. 397, 335–338 (1999)CrossRefGoogle Scholar
  40. K.S. Soppimath, T.M. Aminabhavi, A.R. Kulkarni, W.E. Rudzinski, J. Control. Release. 70, 1–20 (2001)CrossRefGoogle Scholar
  41. Y.-C. Su, L. Lin, Microelectromechanical Syst. 13, 75–82 (2004)CrossRefGoogle Scholar
  42. A. Trautmann, P. Ruther, O. Paul, Proceeding of the IEEE MEMS '03 (Kyoto, Japan (2003), pp. 682–685Google Scholar
  43. Tricumed Medizintechnik GmbH, Kiel, Germany (2003), www.tricumed.de. Accessed 2007
  44. M. Wischke, A. Doll, A. Geipel, F. Goldschmidtboeing, P. Woias, Proceeding of the Actuator 2006 (Bremen, Germany (2006), pp. 276–280Google Scholar
  45. D. Zhao, L. Jiang, E.W. Hahn, R.P. Mason, Neoplasia. 7, 678–687 (2005)CrossRefGoogle Scholar
  46. B. Ziaie, A. Baldi, M. Lei, Y. Gu, R.A. Siegel, Adv. Drug Deliv. Rev. 56, 145–172 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • A. Geipel
    • 1
  • F. Goldschmidtboeing
    • 1
  • P. Jantscheff
    • 2
  • N. Esser
    • 2
  • U. Massing
    • 2
  • P. Woias
    • 1
  1. 1.Laboratory for Design of Microsystems, Department of Microsystems Engineering (IMTEK)University of FreiburgFreiburgGermany
  2. 2.Department Clinical ResearchTumor Biology CenterFreiburgGermany

Personalised recommendations