Biomedical Microdevices

, Volume 10, Issue 3, pp 379–392 | Cite as

Long term, implantable blood pressure monitoring systems

  • Joseph A. Potkay


An overview of implantable measurement systems suitable for the long-term, continuous monitoring of blood pressure is presented in this paper. The challenges, design considerations and tradeoffs inherent in these systems are overviewed and implantable sensors from both industrial and research environments are reviewed. The paper is concluded with an outlook of future directions for implantable blood pressure monitoring systems.


Pressure sensor Blood pressure Microsystems Implanted systems Telemetry Wireless 


  1. D.M. Ackermann, B. Smith, K.L. Kilgore, P.H. Peckham, Design of a high speed transcutaneous optical telemetry link, in Engineering in Medicine and Biology Society, 2006. EMBS ‘06. 28th Annual International Conference of the IEEE, pp. 2932–2935, 2006Google Scholar
  2. E.R. Adair, R.C. Petersen, Biological effects of radiofrequency/microwave radiation IEEE Trans. Microwave Theor. Tech. 50, 953–962 (2002)CrossRefGoogle Scholar
  3. M.G. Allen, Micromachined endovascularly-implantable wireless aneurysm pressure sensors: from concept to clinic Transducers ’05 1, 275–278 (2005)Google Scholar
  4. American national standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 300 kHz to 300 GHz, Tech. Rep. ANSI C95.1 (1982)Google Scholar
  5. K. Banister, I.R. Chambers, M.S. Siddique, H.M. Fernandes, A.D. Mendelow, Intracranial pressure and clinical status: assessment of two intracranial pressure transducers Physiol. Meas. 21, 473–479 (2000)CrossRefGoogle Scholar
  6. T.J. Becker, Heart healthy: CardioMEMS moves closer to commercializing innovative sensors for heart patients. [Online]. 2007(01/23), Available:, (2006, Jan.)
  7. D. Behrend, B. Clasbrumme, D. Etuodt, C. Hierold, H. Kapels, E. Landgraf, K. Oppermann, T. Scheiter, M. Steger, D. Wenzel, Implantable low power integrated pressure sensor system for minimal invasive telemetric patient monitoring, Micro Electro Mechanical Systems, 1998. MEMS 98. Proceedings., the Eleventh Annual International Workshop onGoogle Scholar
  8. J.M. Borky, K.D. Wise, Integrated signal conditioning for silicon pressure sensors IEEE Trans. Electron Devices 26, 1906–1910 (1979)CrossRefGoogle Scholar
  9. T.A. Bowdle, Complications of invasive monitoring Anesthesiol. Clin. North Am. 20, 333 (2002)Google Scholar
  10. F. Braunschweig, B. Kjellstrom, M. Soderhall, N. Clyne, C. Linde, Dynamic changes in right ventricular pressures during haemodialysis recorded with an implantable haemodynamic monitor Nephrol. Dial. Transplant. 21, 176–183 (2006)CrossRefGoogle Scholar
  11. A.C. Burton, Physiology and Biophysics of the Circulation, 2nd edn. (Year Book Medical Publishers, Chicago (1972)Google Scholar
  12. Campus Micro Technologies GmbH. [Online]. 2007(11/18), Available:
  13. CardioMEMS, CardioMEMS, inc. announces first patient implant of wireless pressure sensor for heart failure monitoring in the united states. [Online]. 2007(04/09), Available: (2006, Dec.)
  14. CardioMEMS, CardioMEMS, inc. announces FDA clearance of the EndoSureä wireless AAA pressure measurement system for measuring intrasac pressure during thoracic aortic aneurysm (TAA) repair. [Online]. 2007(04/09), Available: (2007a, Mar.)
  15. CardioMEMS. [Online]. 2007b(01/23), Available:
  16. F.W. Casadei, M. Gerold, E. Baldinger, Implantable blood pressure telemetry system IEEE Trans. Biomed. Eng. BME-9, 334–341 (1972)CrossRefGoogle Scholar
  17. S. Chatzandroulis, D. Tsoukalas, P.A. Neukomm, Miniature pressure system with a capacitive sensor and a passive telemetry link for use in implantable applications J. Microelectromech. Syst. 9, 18–23 (2000)CrossRefGoogle Scholar
  18. P. Cong, D.J. Young, W.H. Ko, Novel long-term implantable blood pressure monitoring system Proc IEEE Sensors 3, 1359–1362 (2004)CrossRefGoogle Scholar
  19. P. Cong, K. Olszens, D.J. Young, W.H. Ko, Implantable blood pressure monitoring of small animal for advanced biological research Transducers ’05 2, 2002–2006 (2005)Google Scholar
  20. P. Cong, D.J. Young, B. Hoit, W.H. Ko, Novel long-term implantable blood pressure monitoring system with reduced baseline drift, EMBS ‘06, 1854–1857 (2006)Google Scholar
  21. R. Cooper, D. Beale, Radio telemetry of intraocular pressure in vitro, Invest. Ophthalmol. Vis. Sci. 16, 168–171 (1977)Google Scholar
  22. J. Coosemans, R. Puers, An autonomous bladder pressure monitoring system Sens. Actuators, A. Phys. 123–124, 155–161 (2005)Google Scholar
  23. Data Sciences International, Guide to PhysioTel transmitters. [Online]. 2007(01/23), Available HTTP: (2005, Dec 5)
  24. A.D. DeHennis, Remotely-powered wireless monitoring systems, PhD Dissertation, University of Michigan, Ann Arbor, 2004Google Scholar
  25. A.D. DeHennis, K.D. Wise, A wireless microsystem for the remote sensing of pressure, temperature, and relative humidity J. Microelectromech. Syst. 14, 12–22 (2005)CrossRefGoogle Scholar
  26. A.D. DeHennis, K.D. Wise, A fully integrated multisite pressure sensor for wireless arterial flow characterization J. Microelectromech. Syst. 15, 678–685 (2006)CrossRefGoogle Scholar
  27. T. Eggers, C. Marschner, U. Marschner, B. Clasbrummel, R. Laur, J. Binder, Advanced hybrid integrated low-power telemetric pressure monitoring system for biomedical applications, Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), pp. 329–334 (2000)Google Scholar
  28. S.H. Ellozy, First experience in human beings with a permanently implantable intrasac pressure transducer for monitoring endovascular repair of abdominal aortic aneurysms J. Vasc. Surg. 40, 405–411 (2004)CrossRefGoogle Scholar
  29. R.H. Epstein, S. Huffnagle, R.R. Bartkowski, Comparative accuracies of a finger blood-pressure monitor and an oscillometric blood-pressure monitor J. Clin. Monit. 7, 161–167 (1991)CrossRefGoogle Scholar
  30. B.J. Feder, A remote heart monitor fails to impress F.D.A. panel. [Online]. 2007(11/18), Available: (2007, March 2)
  31. B.B. Flick, R. Orglmeister, A portable microsystem-based telemetric pressure and temperature measurement unit IEEE Trans. Biomed. Eng. 47, 12–16 (2000)CrossRefGoogle Scholar
  32. M.A. Fonseca, M.G. Allen, J. Kroh, J. White, Flexible wireless passive pressure sensors for biomedical applications, Technical Digest of the Solid-State Sensor, Actuator, and Microsystems Workshop (Hilton Head 2006), pp. 38–42, 2006.Google Scholar
  33. E.E. Frezza, H. Mezghebe, Indications and complications of arterial catheter use in surgical or medical intensive care units: analysis of 4932 patients Am. Surg. 64, 127–131 (1998)Google Scholar
  34. M. Frischholz, Wireless pressure monitoring systems Med. Device Technol. 17, 24–27 (2006)Google Scholar
  35. G. Harsanvi, Sensors in Biomedical Applications: Fundamentals, Technology, and Applications (CRC Press, Boca Raton, FL (2000)Google Scholar
  36. IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz, Tech. Rep. IEEE C95.1–1991 (1992)Google Scholar
  37. Integrated Sensing Systems, Medical products overview. [Online]. 2007(01/23), Available: (2002)
  38. K. Kramer, H. Voss, J.A. Grimbergen, P.A. Mills, D. Huetteman, L. Zwiers, B. Brockway, Telemetric monitoring of blood pressure in freely moving mice: a preliminary study Lab. Anim. 34, 272–280 (2000)CrossRefGoogle Scholar
  39. O. Kemmotsu, M. Ueda, H. Otsuka, T. Yamamura, D.C. Winter, J.S. Eckerle, Arterial tonometry for noninvasive, continuous blood-pressure monitoring during anesthesia Anesthesiology 75, 333–340 (1991)CrossRefGoogle Scholar
  40. J.L. Kermode, N.J. Davis, W.R. Thompson, Comparison of the Finapres blood-pressure monitor with intra-arterial manometry during induction of anesthesia Anaesth. Intensive Care 17, 470–475 (1989)Google Scholar
  41. W.H. Ko, Power sources for implant telemetry and stimulation systems A Handbook on Biotelemetry and Radio Tracking C.J. Amlaner, D. MacDonald (Pergamon Press, INc., Elmsford, NY (1980), 225–245Google Scholar
  42. N. Kudo, K. Shimizu, G. Matsumoto, Fundamental study on transcutaneous biotelemetry using diffused light. Front. Med. Biol. Eng. 1, 19–28 (1988)Google Scholar
  43. Y.S. Lee, K.D. Wise, A batch-fabricated silicon capacitive pressure transducer with low temperature sensitivity IEEE Trans. Electron Devices 29, 42–48 (1982)CrossRefGoogle Scholar
  44. B.E. Lewandowski, K.L. Kilgore, K.J. Gustafson, Design considerations for an implantable, muscle powered piezoelectric system for generating electrical power Ann. Biomed. Eng. 35, 631–641 (2007)CrossRefGoogle Scholar
  45. J.C. Lin, Safety standards for human exposure to radio frequency radiation and their biological rationale IEEE Microw. Mag. 4, 22–26 (2003)Google Scholar
  46. Mayo Clinic Staff, High blood pressure: Get the most out of home monitoring. [Online]. 2007(01/25), Available: (2006, May)
  47. P.A. Mills, D.A. Huetteman, B.P. Brockway, L.M. Zwiers, A.J.M. Gelsema, R.S. Schwartz, K. Kramer, A new method for measurement of blood pressure, heart rate, and activity in the mouse by radiotelemetry J. Appl. Physiol. 88, 1537–1544 May 1(2000)Google Scholar
  48. N. Najafi, A. Ludomirsky, Initial animal studies of a wireless, batteryless, MEMS implant for cardiovascular applications Biomed. Microdevices 6, 61–65 (2004)CrossRefGoogle Scholar
  49. E. O’Brien, R. Asmar, L. Beilin, Y. Imai, G. Mancia, T. Mengden, M. Myers, P. Padfield, P. Palatini, G. Parati, T. Pickering, J. Redon, J. Staessen, G. Stergiou, P. Verdecchia, European society of hypertension recommendations for conventional, ambulatory and home blood pressure measurement J. Hypertens 21, 821–848 (2003)CrossRefGoogle Scholar
  50. E.R. Olsen, C.C. Collins, W.F. Loughborough, V. Richards, J.E. Adams, D.W. Pinto, Intracranial pressure measurement with a miniature passive implanted pressure transensor, Am. J. Surg. 113(6), 727–729 (1967)Google Scholar
  51. J.A. Paradiso, T. Starner, Energy scavenging for mobile and wireless electronics Pervasive Computing, IEEE 4, 18–27 (2005)CrossRefGoogle Scholar
  52. E. Park, J. Yoon, E. Yoon, Hermetically sealed inductor-capacitor (LC) resonator for remote pressure monitoring Jpn. J. Appl. Phys. 37, 7124–7128 (1998)CrossRefGoogle Scholar
  53. K.E. Petersen, Silicon as a mechanical material Proc. IEEE 70, 420–457 (1982)CrossRefGoogle Scholar
  54. T.G. Pickering, J.E. Hall, L.J. Appel, B.E. Falkner, J. Graves, M.N. Hill, D.W. Jones, T. Kurtz, S.G. Sheps, E.J. Roccella, Recommendations for blood pressure measurement in humans and experimental animals: part 1: Blood pressure measurement in humans: a statement for professionals from the subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research, Hypertension 45, 142–161, January 1 (2005)Google Scholar
  55. B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons, Biomaterials Science: An Introduction to Materials in Medicine, 2nd edn. (Elsevier Academic Press, 2004), p. 864Google Scholar
  56. R. Receveur, Microsystem technologies for implantable applications J. Micromech. Microeng. 17, R50–R80 (2007)CrossRefGoogle Scholar
  57. Remon Medical Technologies Inc. [Online]. 2007(11/18),Available:
  58. Safety level of electromagnetic radiation with respect to personnel, Tech. Rep. USASI Standard C95.1–1966 (1966)Google Scholar
  59. B. Scheer, A. Perel, U. Pfeiffer, Clinical review: complications and risk factors of peripheral arterial catheters used for haemodynamic monitoring in anaesthesia and intensive care medicine Crit. Care 6, 199–204 (2002)CrossRefGoogle Scholar
  60. U. Schnakenberg, P. Walter, G. vom Bogel, C. Kruger, H. Ludtke-Handjery, H.A. Richter, W. Specht, P. Ruokonen, W. Mokwa, Initial investigations on systems for measuring intraocular pressure Sens. Actuators, A, Phys. 85, 287–291 (2000)CrossRefGoogle Scholar
  61. E. Siwapornsathain, A. Lal, J. Binard, A telemetry and sensor platform for ambulatory urodynamics, in Microtechnologies in Medicine & Biology 2nd Annual International IEEE-EMB Special Topic Conference on, 2002, pp. 283–287.Google Scholar
  62. J.A. Staessen, E.T. O’Brien, L. Thijs, R.H. Fagard, Modern approaches to blood pressure measurement Occup. Environ. Med. 57, 510–520 (2000)CrossRefGoogle Scholar
  63. T. Starner, J.A. Paradiso, Human generated power for mobile electronics, in Low-Power Electronics Design, ed. C. Piguet (CRC Press, 2004), pp. 44.1–44.35Google Scholar
  64. D. Steinhaus, D.W. Reynolds, F. Gadler, G.N. Kay, M.F. Hess, T. Bennett, Implant experience with an implantable hemodynamic monitor for the management of symptomatic heart failure Pacing Clin. Electrophysiol. 28, 747–753 (2005)CrossRefGoogle Scholar
  65. K. Takahata, A. DeHennis, K.D. Wise, Y.B. Gianchandani, Stentenna: a micromachined antenna stent for wireless monitoring of implantable microsensors Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 4, 3360–3363 (2003)Google Scholar
  66. K. Takahata, A. DeHennis, K.D. Wise, Y.B. Gianchandani, A wireless microsensor for monitoring flow and pressure in a blood vessel utilizing A dual-inductor antenna stent and two pressure sensors, Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), pp. 216–219 (2004)Google Scholar
  67. F.E. Terman, Radio Engineer’s Handbook (McGraw Hill, New York (1943)Google Scholar
  68. N. Tesla, Electrical transformer, US Patent No. 593,138, Issued: 1897Google Scholar
  69. N. Tesla, System of transmission of electrical energy, US Patent No. 645,576, Issued: 1900Google Scholar
  70. The National Spinal Cord Injury Association, Autonomic dysreflexia. [Online]. 2007(01/25), Available: (2006)
  71. J.K. Triedman, J.P. Saul, Comparison of intraarterial with continuous noninvasive blood-pressure measurement in postoperative pediatric patients J. Clin. Monit. 10, 11–20 (1994)CrossRefGoogle Scholar
  72. U.S. Department of Health and Human Services, Blood pressure measurement devices (sphygmomanometers)—accuracy. Report # CPG 7124.23 (2005, Feb. 18)Google Scholar
  73. R.L. Van Citters, W.S. Kemper, D.L. Franklin, Blood pressure responses of wild giraffes studied by radio telemetry, Science 152(3720), 384–386 (1966)Google Scholar
  74. T. Vo-Dinh, Biomedical Photonics Handbook (CRC Press, Boca Raton, FL (2003)Google Scholar
  75. J.G. Webster, Medical Instrumentation: Applicaiton and Design, 3rd edn. (John Wiley & Sons, 1997), p. 720Google Scholar
  76. S.E. Whitesall, J.B. Hoff, A.P. Vollmer, L.G. D’Alecy, Comparison of simultaneous measurement of mouse systolic arterial blood pressure by radiotelemetry and tail-cuff methods Am. J. Physiol. Heart Circ. Physiol. 286, H2408–H2415 (2004)CrossRefGoogle Scholar
  77. R.G. Wilkins, Radial artery cannulation and ischemic damage - a review Anaesthesia 40, 896–899 (1985)CrossRefGoogle Scholar
  78. K.D. Wise, S.K. Clark, Diaphragm formation and pressure sensitivity in batch-fabricated silicon pressure sensors, in Electron Devices Meeting, 1978 International, 1978, pp. 96–99Google Scholar
  79. H. Yu, A wireless microsystem for multichannel neural recording microprobes, PhD Dissertation, University of Michigan, Ann Arbor, 2004Google Scholar
  80. Y. Zhang, S. Massoud-Ansari, G. Meng, W. Kim, N. Najafi, An ultra-sensitive, high-vacuum absolute capacitive pressure sensor, in Micro Electro Mechanical Systems, 2001. MEMS 2001. the 14th IEEE International Conference on, 2001, pp. 166–169Google Scholar
  81. B. Ziaie, K. Najafi, An implantable microsystem for tonometric blood pressure measurement Biomed. Microdevices 3, 285–292 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Advanced Platform Technology (APT) CenterLouis Stokes Cleveland Veterans Affairs Medical CenterClevelandUSA

Personalised recommendations