Biomedical Microdevices

, Volume 10, Issue 3, pp 337–345

Dielectrophoretic oocyte selection chip for in vitro fertilization

Article

Abstract

This paper reports a new dielectrophoretic separation method of porcine oocytes for in vitro fertilization. Conventional manual selection of oocyte highly depends on the expert’s experience and lacks universal standards for identifying the quality of oocyte. In this study, an electrode array chip with castellated shape was developed to evaluate dielectrophoretic velocities of oocytes, under applied bias conditions with an AC 3 V waveform at 1 MHz for 15 s. Based on different dielectrophoresis (DEP) response, the selected group of oocytes that moved showed a better developmental potential than the group of oocytes that stayed, representing a higher rate of blastocyst formation and a lower rate of polyspermic fertilization. In addition, the overall developmental potential of oocytes selected by the DEP device was comparable to that of oocytes selected by conventional manual method. These results demonstrate that the difference in dielectrophoretic velocity can be used to establish an objective criterion for the selection of oocytes. Consequently, this method will open the possibility to develop an automatic tool for oocyte selection, which would be helpful for assisted reproductive technologies such as transgenic and clonal animal production.

Keywords

Dielectrophoresis Oocyte selection In vitro fertilization Dielectrophoretic velocity 

References

  1. W.M. Arnold, R.K. Schmutzler, A.G. Schmutzler, H.V.D. Ven, S. Al-Hasani, D. Krebs, U. Zimmermann, Biochim. Biophys. Acta 905, 454–464 (1987)CrossRefGoogle Scholar
  2. W.M. Arnold, R.K. Schmutzler, S. Al-Hasani, D. Krebs, U. Zimmermann, Biochim. Biophys. Acta 979, 142–146 (1989)CrossRefGoogle Scholar
  3. B.S. Cho, T.G. Schuster, X. Zhu, D. Chang, G.D. Smith, S. Takayama, Anal. Chem. 75, 1671–1675 (2003)CrossRefGoogle Scholar
  4. S. Choi, J.-K. Park, Lab Chip 5, 1161–1167 (2005)CrossRefGoogle Scholar
  5. S.G. Clark, K. Haubert, D.J. Beebe, C.E. Ferguson, M.B. Wheeler, Lab Chip 5, 1229–1232 (2005)CrossRefGoogle Scholar
  6. G. Coticchio, E. Sereni, L. Serrao, S. Mazzone, I. Iadarola, A. Borini, Ann. N. Y. Acad. Sci. 1034, 132–144 (2004)CrossRefGoogle Scholar
  7. P. Devroey, A.V. Steirteghem, Hum. Reprod. Update 10, 19–28 (2004)CrossRefGoogle Scholar
  8. P.S. Dittrich, K. Tachikawa, A. Manz, Anal. Chem. 78, 3887–3908 (2006)CrossRefGoogle Scholar
  9. J. El-Ali, P.K. Sorger, K.F. Jensen, Nature 442, 403–411 (2006)CrossRefGoogle Scholar
  10. S.L.S. Freire, A.R. Wheeler, Lab Chip 6, 1415–1423 (2006)CrossRefGoogle Scholar
  11. P.R.C. Gascoyne, J.V. Vykoukal, Proc. IEEE 92, 22–42 (2004)CrossRefGoogle Scholar
  12. P. Gaynor, D.N. Wells, B. Oback, Med. Biol. Eng. Comput. 43, 150–154 (2005)CrossRefGoogle Scholar
  13. I.K. Glasgow, H.C. Zeringue, D.J. Beebe, S.-J. Choi, J.T. Lyman, N.G. Chan, M.B. Wheeler, IEEE Trans. Biomed. Eng. 48, 570–577 (2001)CrossRefGoogle Scholar
  14. D.S. Gray, J.L. Tan, J. Voldman, C.S. Chen, Biosens. Bioelectron. 19, 1765–1774 (2004)CrossRefGoogle Scholar
  15. C. Huang, A. Chen, L. Wang, M. Guo, J. Yu, Biomed. Microdevices 9, 335–343 (2007)CrossRefGoogle Scholar
  16. M.P. Hughes, Electrophoresis 23, 2569–2582 (2002)Google Scholar
  17. M.G. Hunter, Rev. Reprod. 5, 122–130 (2000)CrossRefGoogle Scholar
  18. T.B. Jones, Electromechanics of Particles (Cambridge University Press, Cambridge (1995), 34–81Google Scholar
  19. L.J. Kricka, I. Faro, S. Heyner, W.T. Garside, G. Fitzpatrick, G. McKinnon, J. Ho, P. Wilding, J. Pharm. Biomed. Anal. 15, 1443–1447 (1997)CrossRefGoogle Scholar
  20. M.J. Moehlenbrock, A.K. Price, R.S. Martin, Analyst 131, 930–937 (2006)CrossRefGoogle Scholar
  21. T. Müller, G. Gradl, S. Howitz, S. Shirley, T. Schnelle, G. Fuhr, Biosens. Bioelectron. 14, 247–256 (1999)CrossRefGoogle Scholar
  22. J. Park, S.-H. Jung, Y.-H. Kim, B. Kim, S.-K. Lee, J.-O. Park, Lab Chip 5, 91–96 (2005)CrossRefGoogle Scholar
  23. R. Pethig, G.H. Markx, Trends Biotechnol. 15, 426–432 (1997)CrossRefGoogle Scholar
  24. R.M. Petters, K.D. Wells, J. Reprod. Fertil. Suppl. 48, 61–73 (1993)Google Scholar
  25. K. Ratanachoo, P.R.C. Gascoyne, M. Ruchirawat, Biochim. Biophys. Acta 1564, 449–458 (2002)CrossRefGoogle Scholar
  26. S. Raty, E.M. Walters, J. Davis, H. Zeringue, D.J. Beebe, S.L. Rodriguez-Zas, M.B. Wheeler, Lab Chip 4, 186–190 (2004)CrossRefGoogle Scholar
  27. Z. Sadani, B. Wacogne, C. Pieralli, C. Roux, T. Gharbi, Sens. Actuators A Phys. 121, 364–372 (2005)CrossRefGoogle Scholar
  28. R.M. Schultz, C.J. Williams, Science 296, 2188–2190 (2002)CrossRefGoogle Scholar
  29. R.S. Suh, N. Phadke, D.A. Ohl, S. Takayama, G.D. Smith, Hum. Reprod. Update 9, 451–461 (2003)CrossRefGoogle Scholar
  30. R.S. Suh, X. Zhu, N. Phadke, D.A. Ohl, S. Takayama, G.D. Smith, Hum. Reprod. 21, 477–483 (2006)CrossRefGoogle Scholar
  31. M. Toner, D. Irimia, Annu. Rev. Biomed. Eng. 7, 77–103(2005)CrossRefGoogle Scholar
  32. N. Tsukada, K. Kudoh, M. Budiman, A. Yamamoto, T. Higuchi, M. Kobayashi, K. Sato, K. Oishi, K. Iida, J. Mamm. Ova Res. 18, 106–109 (2001)CrossRefGoogle Scholar
  33. E. Verpoorte, Electrophoresis 23, 677–712 (2002)CrossRefGoogle Scholar
  34. T. Wakayama, A.C.F. Perry, M. Zuccotti, K.R. Johnson, R. Yanagimachi, Nature 394, 369–374 (1998)CrossRefGoogle Scholar
  35. S.M. Willadsen, Nature 320, 63–65 (1986)CrossRefGoogle Scholar
  36. I. Wilmut, A.E. Schnieke, J. McWhir, A.J. Kind, K.H.S. Campbell, Nature 385, 810–813 (1997)CrossRefGoogle Scholar
  37. R. Zeggari, B. Wacogne, C. Pieralli, C. Roux, T. Gharbi, Laser Phys. 16, 294–302 (2006)CrossRefGoogle Scholar
  38. H.C. Zeringue, D.J. Beebe, M.B. Wheeler, Biomed. Microdevices 3, 219–224 (2001)CrossRefGoogle Scholar
  39. H.C. Zeringue, J.J. Rutledge, D.J. Beebe, Lab Chip 5, 86–90 (2005)CrossRefGoogle Scholar
  40. U. Zimmermann, J. Vienken, J. Membrane Biol. 67, 165–182 (1982)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Bio and Brain EngineeringKorea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
  2. 2.Center for Regenerative MedicineKorea Research Institute of Bioscience and Biotechnology (KRIBB)DaejeonRepublic of Korea

Personalised recommendations