Biomedical Microdevices

, Volume 10, Issue 3, pp 329–335 | Cite as

Generation of concentration gradient from a wave-like pattern by high frequency vibration of liquid–liquid interface

  • Kohei Motoo
  • Naoya Toda
  • Fumihito Arai
  • Toshio Fukuda
  • Kosuke Sekiyama
  • Masahiro Nakajima
Article

Abstract

The fast and effective generation of a concentration gradient by mixing in the microchannel is important for many microfluidic applications. The active control of gradient is useful for applying the measurement of cell responses by dynamic change of environment. The main purpose of this paper is the generation of temporally stable concentration gradient actively. For this purpose, the wave-like pattern of the liquid–liquid interface is produced in the microchannel. In this technique, the high frequency of the wave-like pattern is necessary for reducing the length of the mixing path. High frequency of the wave-like pattern is achieved by employing the newly developed microvalve using tailor-made multilayer piezoelectric actuators (TAMPA) that is compact yet produces large displacements and forces. This paper first details the concept for the concentration gradient generation method. Next, a microvalve (20 × 15 × 15 mm) was designed and produced using TAMPA (8.5 × 10 × 10 mm). Finally, a concentration gradient in two-layered flow was generated with the microvalve. As a result, the generation of a concentration gradient in two-layered flow with active mixing was achieved. Furthermore, it is shown that the concentration gradient can be controlled actively by adjusting the input voltage to TAMPA.

Keywords

Concentration gradient Microfluidics Microvalve Active mixing Piezoelectric actuator 

References

  1. R. Aris, Proc. R. Soc. A 235, 67–77 (1956)CrossRefGoogle Scholar
  2. S. K. W. Dertinger, D. T. Chiu, N. L. Jeon, G. M. Whitesides, Anal Chem 73, 1240–1246 (2001)CrossRefGoogle Scholar
  3. A. A. Deshmukh, D. Liepmann, A. P. Pisano, Solid-state sensor and actuator workshop, 73–76 (2000)Google Scholar
  4. R. C. Gunawan, J. Silvestre, H. R. Gaskins, P. J. A. Kenis, D. E. Leckband, Langmuir 22, 4250–4258 (2006)CrossRefGoogle Scholar
  5. A. Goullet, I. Glasgow, N. Aubry, Mech Res Commun 33, 739–746 (2006)CrossRefGoogle Scholar
  6. V. Hessel, H. Löwe, F. Schönfeld, Chem Eng Sci 60, 2479–2501 (2005)CrossRefGoogle Scholar
  7. D. Irimia, D. A. Geba, M. Toner, Anal Chem 78, 3472–3477 (2006)CrossRefGoogle Scholar
  8. N. L. Jeon, S. K. W. Dertinger, D. T. Chiu, I. S. Choi, A. D. Stroock, G. M. Whitesides, Langmuir 16, 8311–8316 (2000)CrossRefGoogle Scholar
  9. N. L. Jeon, H. Baskaran, S. K. W. Dertinger, G. M. Whitesides, L. V. D. Water, M. Toner, Nat Biotechnol 20, 826–830 (2002)Google Scholar
  10. X. Jiang, Q. Xu, S. K. W. Dertinger, A. D. Stroock, T. Fu, G. M. Whitesides, Anal Chem 77, 2338–2347 (2005)CrossRefGoogle Scholar
  11. K. Motoo, N. Toda, F. Arai, T. Fukuda, International Conference on New Actuators (Actuator 2006), 499–502 (2006)Google Scholar
  12. N. T. Nguyen, X. Huang, Lab Chip 5, 1320–1326 (2005)CrossRefGoogle Scholar
  13. N. T. Nguyen, X. Huang, Modelling Biomed Microdevices 8, 133–139 (2006)CrossRefGoogle Scholar
  14. N. T. Nguyen, Z. Wu, J Micromechanics Microengineering 15, R1–R16 (2005)CrossRefGoogle Scholar
  15. H. Okamoto, Chem Eng Technol 29, 504–506 (2006)CrossRefGoogle Scholar
  16. C. K. L. Tan, M. C. Tracey, J. B. Davis, I. D. Johnston, J Micromechanics Microengineering 15, 1885–1893 (2005)CrossRefGoogle Scholar
  17. G. M. Whitesides, Nature 442, 368–373 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Kohei Motoo
    • 1
  • Naoya Toda
    • 1
  • Fumihito Arai
    • 2
  • Toshio Fukuda
    • 1
  • Kosuke Sekiyama
    • 1
  • Masahiro Nakajima
    • 1
  1. 1.Department of Micro-Nano Systems EngineeringNagoya UniversityNagoyaJapan
  2. 2.Department of Bioengineering and RoboticsTohoku UniversitySendaiJapan

Personalised recommendations