Biomedical Microdevices

, Volume 10, Issue 2, pp 321–328

Zeta potential: a surface electrical characteristic to probe the interaction of nanoparticles with normal and cancer human breast epithelial cells

  • Yu Zhang
  • Mo Yang
  • Nathaniel G. Portney
  • Daxiang Cui
  • Gurer Budak
  • Ekmel Ozbay
  • Mihrimah Ozkan
  • Cengiz S. Ozkan


We demonstrate the use of surface Zeta potential measurements as a new tool to investigate the interactions of iron oxide nanoparticles and cowpea mosaic virus (CPMV) nanoparticles with human normal breast epithelial cells (MCF10A) and cancer breast epithelial cells (MCF7) respectively. A substantial understanding in the interaction of nanoparticles with normal and cancer cells in vitro will enable the capabilities of improving diagnostic and treatment methods in cancer research, such as imaging and targeted drug delivery. A theoretical Zeta potential model is first established to show the effects of binding process and internalization process during the nanoparticle uptake by cells and the possible trends of Zeta potential change is predicted for different cell endocytosis capacities. The corresponding changes of total surface charge of cells in the form of Zeta potential measurements were then reported after incubated respectively with iron oxide nanoparticles and CPMV nanoparticles. As observed, after MCF7 and MCF10A cells were incubated respectively with two types of nanoparticles, the significant differences in their surface charge change indicate the potential role of Zeta potential as a valuable biological signature in studying the cellular interaction of nanoparticles, as well as specific cell functionality.


Zeta potential Normal breast cells Cancer breast cells Surface charge Iron oxide nanoparticles CPMV nanoparticles Cell endocytosis 


  1. C. Alexiou, W. Arnold, R.J. Klein, F.G. Parak, P. Hulin, C. Bergemann, W. Erhardt, S. Wagenpfeil, A.S. Lubbe, Cancer Res 60, 6641–6648 (2000)Google Scholar
  2. G. Altankov, K. Richau, T. Groth, Mater.wiss. 34, 1120–1128 (2003)CrossRefGoogle Scholar
  3. L. Babes, B. Denizot, G. Tanguy, J. Le, J. Jean, P. Jallet, J. Colloid Interface Sci 212, 474–482 (1999)CrossRefGoogle Scholar
  4. C.C. Berry, A.S. Curtis, J. Phys., D, Appl. Phys 36, R198–R206 (2003)CrossRefGoogle Scholar
  5. A.S. Blum, C.M. Soto, C.D. Wilson, J.D. Cole, M. Kim, B. Gnade, A. Chatterji, W.F. Ochoa, T.J. Lin, J.E. Johnson, B.R. Ratna, Nano Lett 4, 867–870 (2004)CrossRefGoogle Scholar
  6. B.D. Chithrani, A.A. Ghazani, W.C.W. Chan, Nano Lett 6, 662–668 (2006)CrossRefGoogle Scholar
  7. R. Coleman, J.B. Finean, Comp. Biochem 23, 99–126 (1968)Google Scholar
  8. G.M.W. Cook, W. Jacobson, Biochem. J 107, 549–557 (1968)Google Scholar
  9. G.M. Cooper, The Cell: a Molecular Approach, 2nd edn. (ASM Press, Washington D.C, 2000)Google Scholar
  10. A. Dyal, K. Loos, M. Noto, S.W. Chang, C. Spagnoli, K.V. Shafi, A. Ulman, M. Cowman, R.A. Gross, J. Am. Chem. Soc 125, 1684–1685 (2003)CrossRefGoogle Scholar
  11. I. Ermolina, J. Milner, H. Morgan, Electrophoresis 27, 3939–3948 (2006)CrossRefGoogle Scholar
  12. A. Fontes, H.P. Fernandes, M.L. Barjas Castro, A.A. de Thomaz, L.Y. Pozzo, L.C. Barbosa, C.L. Cesar, Microsc. Microanal 12, 1758–1759 (2006)CrossRefGoogle Scholar
  13. A.K. Gupta, M. Gupta, Biomaterials 26, 3995–4021 (2005)CrossRefGoogle Scholar
  14. A.K. Gupta, S. Wells, IEEE Trans. Nanobiosci 3, 66–73 (2004)CrossRefGoogle Scholar
  15. R. Hergt, W. Andra, C.G. d’Ambly, I. Hilger, W.A. Kaiser, U. Richter, H. Schmidt, IEEE Trans. Magn 34, 3745–3754 (1998)CrossRefGoogle Scholar
  16. R.J. Hunter, Zeta Potential in Colloid Science Principles and Applications (Academic Press Inc, 1981)Google Scholar
  17. T.K. Jain, M.A. Morales, S.K. Sahoo, D.L. Leslie-Pelecky, V. Labhasetwar, Mol. Pharmacol 2, 194–205 (2005)CrossRefGoogle Scholar
  18. K.J. Koudelka, C.S. Rae, M.J. Gonzalez, M. Manchester, J Virol 81, 1632–1640 (2007)CrossRefGoogle Scholar
  19. H. Lee, E. Lee, D.K. Kim, N.K. Jang, Y.Y. Jeong, S. Jon, J. Am. Chem. Soc 128, 7383–7389 (2006)CrossRefGoogle Scholar
  20. J.D. Lewis, G. Destito, A. Zijlstra, M. Gonzalez, J. Quigley, M. Manchester, H. Stuhlmann, Nat. Med 12, 354–360 (2006)CrossRefGoogle Scholar
  21. L.K. Limbach, Y. Li, R.N. Grass, T.J. Brunner, M.A. Hintermann, M. Muller, D. Gunther, W.J. Stark, Environ. Sci. Technol 39, 9370–9376 (2005)CrossRefGoogle Scholar
  22. D. Lin, L. Zhong, S. Yao, Biotechnol. Bioeng 95, 185–191 (2006)CrossRefGoogle Scholar
  23. G.P. Lomonossoff, W.D.O. Hamilton, Curr. Top. Microbiol. Immunol 240, 177–189 (1999)Google Scholar
  24. M. Manchester, P. Singh, Adv. Drug Deliv. Rev 58, 1505–1522 (2006)CrossRefGoogle Scholar
  25. H. Pardoe, P.R. Clark, T.G. St Pierre, P. Moroz, S.K. Jones, Magn. Reson. Imaging 21, 483–488 (2003)CrossRefGoogle Scholar
  26. J.M. Perez, T. O’Loughin, F.J. Simeone, R. Weissleder, L. Josephson, J. Am. Chem. Soc 124, 2856–2857 (2002)CrossRefGoogle Scholar
  27. F.C. Siliva Filho, A.B. Santos, T.M. de Carvalho, W. de Souza, J. Leukoc. Biol 41, 143–149 (1987)Google Scholar
  28. F. Sonvico, S. Mornet, S. Vasseur, C. Dubernet, D. Jaillard, J. Degrouard, J. Hoebeke, E. Duguet, P. Colombo, P. Couvreur, Bioconjug. Chem 16, 1181–1188 (2005)CrossRefGoogle Scholar
  29. B. Veronesi, H. Colin, L. Lee, M. Oortgiesen, Toxicol. Appl. Pharmacol 178, 144–154 (2002)CrossRefGoogle Scholar
  30. C. Wilhelm, F. Gazeau, J. Roger, J.N. Pons, J.-C. Bacri, Langmuir 18, 8148–8155 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Yu Zhang
    • 1
  • Mo Yang
    • 2
  • Nathaniel G. Portney
    • 3
  • Daxiang Cui
    • 4
  • Gurer Budak
    • 5
  • Ekmel Ozbay
    • 6
  • Mihrimah Ozkan
    • 7
  • Cengiz S. Ozkan
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of California at RiversideRiversideUSA
  2. 2.Department of Health Technology and InformaticsHong Kong Polytechnic UniversityKowloonChina
  3. 3.Department of BioengineeringUniversity of California at RiversideRiversideUSA
  4. 4.Department of Bio-Nano Science & EngineeringShanghai JiaoTong UniversityShanghaiChina
  5. 5.Gurer Budak Faculty of Medicine, Nanomedicine Research LaboratoryGazi UniversityAnkaraTurkey
  6. 6.Nanotechnology Research Center, Department of Physics and Department of Electrical EngineeringBilkent UniversityAnkaraTurkey
  7. 7.Department of Electrical EngineeringUniversity of California at RiversideRiversideUSA

Personalised recommendations