Biomedical Microdevices

, Volume 10, Issue 2, pp 259–269 | Cite as

A lithographically-patterned, elastic multi-electrode array for surface stimulation of the spinal cord

  • Kathleen W. Meacham
  • Richard J. Giuly
  • Liang Guo
  • Shawn Hochman
  • Stephen P. DeWeerth


A new, scalable process for microfabrication of a silicone-based, elastic multi-electrode array (MEA) is presented. The device is constructed by spinning poly(dimethylsiloxane) (PDMS) silicone elastomer onto a glass slide, depositing and patterning gold to construct wires and electrodes, spinning on a second PDMS layer, and then micropatterning the second PDMS layer to expose electrode contacts. The micropatterning of PDMS involves a custom reactive ion etch (RIE) process that preserves the underlying gold thin film. Once completed, the device can be removed from the glass slide for conformal interfacing with neural tissue. Prototype MEAs feature electrodes smaller than those known to be reported on silicone substrate (60 μm diameter exposed electrode area) and were capable of selectively stimulating the surface of the in vitro isolated spinal cord of the juvenile rat. Stretchable serpentine traces were also incorporated into the functional PDMS-based MEA, and their implementation and testing is described.


Poly(dimethylsiloxane) Multi-electrode array Neural prosthetic Spinal cord Neural interfacing Electrophysiology Surface stimulation Neural control Spinal cord injury 



We thank James Ross for discussions regarding fabrication strategies, Bao To for machining and assembling initial versions of the clamping connector., J.Mark Meacham for illustration software help, and Jevin Scrivens, Edgar Brown, and Shane Migliore for advice about building and using the strain tester. This work was supported by NIH Grant EB00786-01, NSF IBN-0349042, and NIH Grant EB006179.


  1. D. Armani, C. Liu, N. Aluru. in Micro Electro Mechanical Systems, 1999. MEMS '99. Twelfth IEEE International Conference on. 1999, p. 222Google Scholar
  2. A. Branner, R.B. Stein, R.A. Normann, J. Neurophysiol. 85, 1585 (2001)Google Scholar
  3. G.S. Brindley, C.E. Polkey, D.N. Rushton, Paraplegia 20, 365 (1982)Google Scholar
  4. H.L. Cater, D. Gitterman, S.M. Davis, C.D. Benham, B. Morrison 3rd, L.E. Sundstrom, J. Neurochem. 101, 434 (2007)CrossRefGoogle Scholar
  5. J.K. Chapin, Curr. Opin. Neurol. 13, 671 (2000)CrossRefGoogle Scholar
  6. G.M. Clark, Y.C. Tong, R. Black, I.C. Forster, J.F. Patrick, D.J. Dewhurst, J. Laryngol. Otol. 91, 935 (1977)Google Scholar
  7. A.F. DiMarco, J. Rehabil. Res. Dev. 38, 601 (2001)Google Scholar
  8. D.J. Edell, V.V. Toi, V.M. McNeil, L.D. Clark, IEEE Trans. Biomed. Eng. 39, 635 (1992)CrossRefGoogle Scholar
  9. J. Garra, T. Long, J. Currie, T. Schneider, R. White, M. Paranjape, J. Vac. Sci. Technol. A Vac. Surf. Films 20, 975 (2002)CrossRefGoogle Scholar
  10. Y.P. Gerasimenko, I.A. Lavrov, G. Courtine, R.M. Ichiyama, C.J. Dy, H. Zhong, R.R. Roy, V.R. Edgerton, J. Neurosci. Methods 157, 253 (2006)CrossRefGoogle Scholar
  11. D.S. Gray, J. Tien, C.S. Chen, Adv. Mater. 16, 393 (2004).CrossRefGoogle Scholar
  12. W.M. Grill, M.D. Craggs, R.D. Foreman, C.L. Ludlow, J.L. Buller, J. Rehabil. Res. Dev. 38, 641 (2001)Google Scholar
  13. W. He, R.V. Bellamkonda, Biomaterials 26, 2983 (2005)CrossRefGoogle Scholar
  14. M.O. Heuschkel, M. Fejtl, M. Raggenbass, D. Bertrand, P. Renaud, J. Neurosci. Methods 114, 135 (2002)CrossRefGoogle Scholar
  15. T. Hillman, A.N. Badi, R.A. Normann, T. Kertesz, C. Shelton, Otol. Neurotol. 24, 764 (2003)CrossRefGoogle Scholar
  16. Y.H. Holman G., R.C.W., A.O.D. Willows, D. Denton, K.F. Bohringer, in IEEE-EMBS Second Annual International Special Topic Conference on Microtechnologies in Medicine & Biology, Madison, WI, USA (2002)Google Scholar
  17. R.M. Ichiyama, Y.P. Gerasimenko, H. Zhong, R.R. Roy, V.R. Edgerton, Neurosci. Lett. 383, 339 (2005)CrossRefGoogle Scholar
  18. D.K. Kessler, Ann. Otol. Rhinol. Laryngol. Suppl. 177, 8 (1999)Google Scholar
  19. G.H. Kraft, S.S. Fitts, M.C. Hammond, Arch. Phys. Med. Rehabil. 73, 220 (1992)Google Scholar
  20. A. Kralj, T. Bajd, R. Turk, Clin. Orthop. Relat. Res. 233, 34 (1988)Google Scholar
  21. D.K. Leventhal, D.M. Durand, Ann. Biomed. Eng. 31, 643 (2003)CrossRefGoogle Scholar
  22. D.K. Leventhal, D.M. Durand, IEEE Trans. Biomed. Eng. 51, 1649 (2004)CrossRefGoogle Scholar
  23. W.T. Liberson, H.J. Holmquest, D. Scot, M. Dow, Arch. Phys. Med. Rehabil. 42, 101 (1961)Google Scholar
  24. G.E. Loeb, R.A. Peck, J. Neurosci. Methods 64, 95 (1996)CrossRefGoogle Scholar
  25. M.J. Madou, Fundamentals of Microfabrication: The Science of Miniaturization, 2nd edn. (CRC, 2002)Google Scholar
  26. M. Maghribi, J. Hamilton, D. Polla, K. Rose, T. Wilson, P. Krulevitch, in Microtechnologies in Medicine & Biology 2nd Annual International IEEE-EMB Special Topic Conference on, Madison, WI, ed. by A. Dittmar, D. Beebe (IEEE, Piscataway, 2002), p. 80CrossRefGoogle Scholar
  27. D.S. Magnuson, T.C. Trinder, J. Neurophysiol. 77, 200 (1997)Google Scholar
  28. D.S. Magnuson, M.J. Schramm, J.N. MacLean, Neurosci. Lett. 192, 97 (1995)CrossRefGoogle Scholar
  29. D. McDonnall, G.A. Clark, R.A. Normann, IEEE Trans. Neural Syst. Rehabil. Eng. 12, 208 (2004)CrossRefGoogle Scholar
  30. G.G. Naples, J.T. Mortimer, A. Scheiner, J.D. Sweeney, IEEE Trans. Biomed. Eng. 35, 905 (1988)CrossRefGoogle Scholar
  31. H. Oka, K. Shimono, R. Ogawa, H. Sugihara, M. Taketani, J. Neurosci. Methods 93, 61 (1999)CrossRefGoogle Scholar
  32. V.S. Polikov, P.A. Tresco, W.M. Reichert, J. Neurosci. Methods 148, 1 (2005).CrossRefGoogle Scholar
  33. A. Prochazka, M. Gauthier, M. Wieler, Z. Kenwell, Arch. Phys. Med. Rehabil. 78, 608 (1997)CrossRefGoogle Scholar
  34. A. Prochazka, V.K. Mushahwar, D.B. McCreery, J. Physiol. 533, 99 (2001)CrossRefGoogle Scholar
  35. D.C. Rodger, W. Li, A.J. Fong, H. Ameri, E. Meng, J.W. Burdick, R.R. Roy, V.R. Edgerton, J.D. Weiland, M.S. Humayun, Y. Tai, in IEEE Engineering in Medicine and Biology Society Special Topic Conference on Microtechnologies in Medicine and Biology, Okinawa, Japan 2006Google Scholar
  36. P.J. Rousche, D.S. Pellinen, D.P. Pivin Jr., J.C. Williams, R.J. Vetter, D.R. Kipke, IEEE Trans. Biomed. Eng. 48, 361 (2001)CrossRefGoogle Scholar
  37. M. Sahin, M.A. Haxhiu, D.M. Durand, I.A. Dreshaj, J. Appl. Physiol. 83, 317 (1997)Google Scholar
  38. S. Schmidt, K. Horch, R. Normann, J. Biomed. Mater. Res. 27, 1393 (1993).CrossRefGoogle Scholar
  39. M. Schuettler, T. Stieglitz, 5th Annual International Conference of the International Functional Electrical Stimulation Society, Aalborg, Denmark, 18 2000Google Scholar
  40. M. Schuettler, S. Stiess, B.V. King, G.J. Suaning, J. Neural Eng. 2, S121 (2005)CrossRefGoogle Scholar
  41. J. Shao, E. Miller. Releasing Polydimethylsiloxane (PDMS) Replica Parts From Micromolds, 2007, from
  42. B.L. Shay, M. Sawchuk, D.W. Machacek, S. Hochman, J. Neurophysiol. 94, 2867 (2005)CrossRefGoogle Scholar
  43. F.A. Spelman, IEEE Eng. Med. Biol. Mag. 18, 27 (1999)CrossRefGoogle Scholar
  44. R.B. Stein, V. Mushahwar, Trends Neurosci. 28, 518 (2005)CrossRefGoogle Scholar
  45. R.B. Stein, K.G. Pearson, J. Theor. Biol. 32, 539 (1971)CrossRefGoogle Scholar
  46. T. Stieglitz (2001). Catalogue on Available Flexible, Light-weighted Microelectrodes, from
  47. J.J. Struijk, M. Thomsen, J.O. Larsen, T. Sinkjaer, IEEE Eng. Med. Biol. Mag. 18, 91 (1999)CrossRefGoogle Scholar
  48. G.L. Subrebost, A.J. Rosenbloom, V. Weedn, K. Gabriel, in Proceedings of the Sixth International Symposium on Micro Total Analysis System (mTAS 2002), Nara, Japan, Nov. 2–8, 2002Google Scholar
  49. Y.Y.-C.T. Suzuki, in Micro Electro Mechanical Systems, IEEE The Sixteenth Annual International Conference on, Kyoto 2003Google Scholar
  50. P.N. Taylor, J.H. Burridge, A.L. Dunkerley, A. Lamb, D.E. Wood, J.A. Norton, I.D. Swain, Clin. Rehabil. 13, 439 (1999)CrossRefGoogle Scholar
  51. C. Tsay, S.P. Lacour, S. Wagner, B. Morrison III, in Sensors, 2005 IEEE2005, p. 1169Google Scholar
  52. C. Tsay, O. Graudejus, S. Wagner, S.P. Lacour, B. Morrison III, in MRS Proceedings, Symposium U: Advanced Materials for Neuroprosthetic Interfaces, San Francisco, CA 2007Google Scholar
  53. D.J. Tyler, D.M. Durand, IEEE Trans. Neural Syst. Rehabil. Eng. 10, 294 (2002)CrossRefGoogle Scholar
  54. H.P. Weingarden, G. Zeilig, R. Heruti, Y. Shemesh, A. Ohry, A. Dar, D. Katz, R. Nathan, A. Smith, Am. J. Phys. Med. Rehabil. 77, 276 (1998)CrossRefGoogle Scholar
  55. X. Yang, C. Grosjean, Y.C. Tai, in Solid-state Sensor and Actuator Workshop, 1998Google Scholar
  56. Z. Yu, O. Graudejus, C. Tsay, S.P. Lacour, S. Wagner, B. Morrison III, in MRS Proceedings, Symposium U: Advanced Materials for Neuroprosthetic Interfaces, 2007Google Scholar
  57. Y. Zhong, X. Yu, R. Gilbert, R.V. Bellamkonda, J. Rehabil. Res. Dev. 38, 627 (2001)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Kathleen W. Meacham
    • 1
  • Richard J. Giuly
    • 1
  • Liang Guo
    • 1
  • Shawn Hochman
    • 2
  • Stephen P. DeWeerth
    • 1
  1. 1.Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaUSA
  2. 2.Department of PhysiologyEmory University School of MedicineAtlantaUSA

Personalised recommendations