Biomedical Microdevices

, Volume 10, Issue 2, pp 221–231 | Cite as

Micro coulter counters with platinum black electroplated electrodes for human blood cell sensing

Article

Abstract

We demonstrated a novel micro Coulter counter featuring platinum-black electrodes for human blood cell counting application. Two designs of micro Coulter counter were fabricated using two distinct technologies: integrated parylene and soft lithography. Platinum-black enhanced detection in the intermediate frequency range (∼100 Hz to 7 MHz), which is the operation frequency suitable for sensing the cells flowing by the electrodes. A detailed theoretical modeling of the sensing mechanism has been performed for the design of the electrodes, and electrical impedance spectra measurements confirmed the theoretical model. The surface morphology and roughness of the platinum black electroplated surface were characterized by SEM and AFM measurements. Polystyrene beads of various sizes were initially used to validate the operation of the devices, and using excitation frequency of 10 kHz, the signal magnitude was found to be correlated with the volume of the individual bead. Human blood cell sensing was successfully demonstrated with diluted whole blood and leukocyte rich plasma under the same excitation frequency. The histogram of impedance magnitude of the cells matched well with volume distributions of erythrocytes and leukocytes measured by conventional counting techniques. Micro Coulter counters have the advantages of small foot-print, low sample volume, and reduced cost of operation. Further development of the devices can lead to the development of a highly-sensitive and high-throughput handheld blood counting system for point-of-care applications.

Keywords

Coulter counter Platinum black Electroplating Blood 

References

  1. K. Asami, Prog. Polym. Sci. 27(8), 1617–1659 (2002)CrossRefGoogle Scholar
  2. H.E. Ayliffe, A.B. Frazier, R.D. Rabbitt, J. Microelectromech Syst 8(1), 50–57 (1999)CrossRefGoogle Scholar
  3. E. Barsoukov, J.R. Macdonald, Impedance Spectroscopy Theory, Experiment, and Applications, 2nd edn. (Wiley, Hoboken, NJ (2005)Google Scholar
  4. L.J. Breckenridge, R.J.A. Wilson, P. Connolly, A.S.G. Curtis, J.A.T. Dow, S.E. Blackshaw, C.D.W. Wilkinson, J. Neurosci. Res. 42(2), 266–276 (1995)CrossRefGoogle Scholar
  5. C.D. Chin, V. Linder, S.K. Sia, Lab Chip 7(1), 41–57 (2007)CrossRefGoogle Scholar
  6. H.G. Chun, T.D. Chung, H.C. Kim, Anal. Chem. 77(8), 2490–2495 (2005)CrossRefGoogle Scholar
  7. W.H. Coulter, US Patent 2,656,508 (1953)Google Scholar
  8. W.H. Coulter, W.R. Hogo, US Patent 3,502,974 (1970)Google Scholar
  9. A.M. Feltham, M. Spiro, Chem. Rev 71(2), 177–193 (1971)CrossRefGoogle Scholar
  10. S. Gawad, L. Schild, P. Renaud, Lab Chip 1(1), 76(2001)CrossRefGoogle Scholar
  11. S. Gawad, K. Cheung, U. Seger, A. Bertsch, P. Renaud, Lab Chip 4(3), 241–251 (2004)CrossRefGoogle Scholar
  12. B. George-Gay, K. Parker, J. Perianesth. Nurs. 18(2), 96–117 (2003)CrossRefGoogle Scholar
  13. D.C. Grahame, Chem. Rev. 41(3), 441–501 (1947)CrossRefGoogle Scholar
  14. C.H. Hsu, F. Mansfeld, Corrosion 57(9), 747–748 (2001)CrossRefGoogle Scholar
  15. B. Ilic, D. Czaplewski, P. Neuzil, T. Stanczyk, J. Blough, G.J. Maclay, J. Mater. Sci. 35(14), 3447–3457 (2000)CrossRefGoogle Scholar
  16. J.-B. Jorcin, M.E. Orazem, N. Pebere, B. Tribollet, Electrochim. Acta 51(8–9), 1473–1479 (2006)CrossRefGoogle Scholar
  17. D.R. Jung, D.S. Cuttino, J.J. Pancrazio, P. Manos, T. Cluster, R.S. Sathanoori, L.E. Aloi, M.G. Coulombe, M.A. Czamaski, D.A. Borkholder, G.T.A. Kovacs, P. Bey, D.A. Stenger, J.J. Hickman, J. Vac. Sci. Technol., A, Vac. Surf. Films 16(3), 1183–1188 (1998)CrossRefGoogle Scholar
  18. F. Kohlrausch, L. Holborn, (Leipzig: Teubner, 1898)Google Scholar
  19. W. Lang, K. Kuhl, H. Sandmaier, Sens. Actuators, A, Phys. 34(3), 243–248 (1992)CrossRefGoogle Scholar
  20. D.W. Lee, S. Yi, Y.-H. Cho, 18th IEEE International Conference on Micro Electro Mechanical Systems (MEMS2005). (Miami Beach, Florida, USA, 2005).Google Scholar
  21. M.P. Maher, J. Pine, J. Wright, Y.C. Tai, J. Neurosci. Methods 87(1), 45–56 (1999)CrossRefGoogle Scholar
  22. C.A. Marrese, Anal. Chem. 59(1), 217–218 (1987)CrossRefGoogle Scholar
  23. M. Mazumdar, K.L. Kussmaul, Biometrics 23(4), 671–684 (1967)CrossRefGoogle Scholar
  24. S.B. McKenzie, Clinical Laboratory Hematology (Prentice Hall, Upper Saddle River, NJ (2004)Google Scholar
  25. W.H. Mulder, J.H. Sluyters, T. Pajkossy, L. Nyikos, J. Electroanal. Chem. 285(1–2), 103–115 (1990)CrossRefGoogle Scholar
  26. J.H. Nieuwenhuis, F. Kohl, J. Bastemeijer, P.M. Sarro, M.J. Vellekoop, Sens. Actuators, B, Chem. 102(1), 44 (2004)CrossRefGoogle Scholar
  27. H. Oka, K. Shimono, R. Ogawa, H. Sugihara, M. Taketani, J. Neurosci. Methods 93(1), 61–67 (1999)CrossRefGoogle Scholar
  28. S.R. Quake, A. Scherer, Science 290(5496), 1536–1540 (2000)CrossRefGoogle Scholar
  29. D.A. Robinson, Proc Inst Electr Electron Eng 56(6), 1065–1081 (1968)Google Scholar
  30. D. Satake, H. Ebi, N. Oku, K. Matsuda, H. Takao, M. Ashiki, M. Ishida, Sens. Actuators, B, Chem. 83(1–3), 77 (2002)CrossRefGoogle Scholar
  31. W. Schmickler, Chem. Rev. 96(8), 3177–3200 (1996)CrossRefGoogle Scholar
  32. H.P. Schwan, Ann. Biomed. Eng 20(3), 269–288 (1992)CrossRefGoogle Scholar
  33. M. Toner, D. Irimia, Annu. Rev. Biomed. Eng. 7, 77–103 (2005)CrossRefGoogle Scholar
  34. G.M. Whitesides, Nature 442(7101), 368–373 (2006)CrossRefGoogle Scholar
  35. J. Xie, Y.N. Miao, J. Shih, Q. He, J. Liu, Y.C. Tai, T.D. Lee, Anal. Chem. 76(13), 3756–3763 (2004)CrossRefGoogle Scholar
  36. P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M.R. Tam, B.H. Weigl, Nature 442(7101), 412–418 (2006)CrossRefGoogle Scholar
  37. P. Zoltowski, J. Electroanal. Chem. 443(1), 149–154 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Electrical Engineering, Division of Engineering and Applied SciencesCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Department of Bioengineering, Division of Engineering and Applied SciencesCalifornia Institute of TechnologyPasadenaUSA
  3. 3.California Institute of TechnologyPasadenaUSA

Personalised recommendations