Biomedical Microdevices

, Volume 10, Issue 2, pp 197–202 | Cite as

Microfluidic self-assembly of tumor spheroids for anticancer drug discovery



Creating multicellular tumor spheroids is critical for characterizing anticancer treatments since it may provide a better model than monolayer culture of in vivo tumors. Moreover, continuous dynamic perfusion allows the establishment of physiologically relevant drug profiles to exposed spheroids. Here we present a physiologically inspired design allowing microfluidic self-assembly of spheroids, formation of uniform spheroid arrays, and characterizations of spheroid dynamics all in one platform. Our microfluidic device is based on hydrodynamic trapping of cancer cells in controlled geometries and the formation of spheroids is enhanced by maintaining compact groups of the trapped cells due to continuous perfusion. It was found that spheroid formation speed (average of 7 h) and size uniformity increased with increased flow rate (up to 10 μl min−1). A large amount of tumor spheroids (7,500 spheroids per square centimeter) with a narrow size distribution (10 ± 1 cells per spheroid) can be formed in the device to provide a good platform for anticancer drug assays.


Tumor spheroids Drug assay Cell culture Microfluidic devices 



This research was supported by Intel Research Fund, GSK, Taiwan Merit Scholarship TMS-094-2-A-008 (L.W.) and a Whitaker Foundation graduate fellowship (D. D.). All master copies for PDMS molding were fabricated in the UC Berkeley microfabrication facility.

Supplementary material


(AVI 2.72 mb)


(MPG 12.8 mb)


  1. H. Acker, J. Theor, Med. 1, 193–207 (1998)Google Scholar
  2. R.C. Bates, N.S. Edwards, J.D. Yates, Crit. Rev. Oncol. Hematol. 36, 61–74 (2000)CrossRefGoogle Scholar
  3. V.I. Chin, P. Taupin, S. Sanga, J. Scheel, F.H. Gage, S.N. Bhatia1, Biotechnol. Bioeng. 88, 399–415 (2004)CrossRefGoogle Scholar
  4. B. Desoize, Crit. Rev. Oncol. Hematol. 36, 59– 60 (2000)CrossRefGoogle Scholar
  5. B. Desoize, D. Gimonet, J.C. Jardiller, Anticancer Res. 18, 4147–4158 (1998)Google Scholar
  6. M. Deutsch, A. Deutsch, O. Shirihai, I. Hurevich, E. Afrimzon, Y. Shafrana, N. Zurgil, Lab. Chip. 6, 995–1000 (2006)CrossRefGoogle Scholar
  7. D. Di Carlo, N. Aghdam, L.P. Lee, Anal. Chem. 78, 4925–4930 (2006a)CrossRefGoogle Scholar
  8. D. Di Carlo, L.Y. Wu, L.P. Lee, Lab. Chip. 6, 1445–1449 (2006b)CrossRefGoogle Scholar
  9. M.A. Faute, L. Laurent, D. Ploton, M.F. Poupon, J.C. Jardillier, H. Bobichon, Clin. Exp. Metastasis. 19, 161–168 (2002)CrossRefGoogle Scholar
  10. M. Haji-Karim, J. Carlsson, Cancer Res. 38, 1457–1464 (1978)Google Scholar
  11. P.J. Hung, P. Lee, L.P. Lee, Biotechnol. Bioeng. 89, 1–8 (2005a)CrossRefGoogle Scholar
  12. P.J. Hung, P. Lee, P. Sabounchi, N. Aghdam, R. Lin, L.P. Lee, Lab. Chip. 5, 44–48 (2005b)CrossRefGoogle Scholar
  13. G.M. Keller, Curr. Opin. Cell. Biol. 7, 862–869 (1995)CrossRefGoogle Scholar
  14. J.M. Kelm, N.E. Timmins, C.J. Brown, M. Fussenegger, L.K. Nielsen, Biotechnol. Bioeng. 83, 173–180 (2003)CrossRefGoogle Scholar
  15. L. Kim, M.D. Vahey, H. Lee, J. Voldman, Lab. Chip. 6, 394–406 (2006)CrossRefGoogle Scholar
  16. R. Knuechel, R.M. Sutherland, Cancer J. 3, 234–243 (1990)Google Scholar
  17. L.A. Kunz-Schughart, M. Kreutz, R. Knuechel, Int. J. Exp. Pathol. 79, 1–23 (1998)CrossRefGoogle Scholar
  18. W. Mueller-Klieser, Am. J. Physiol. 273, C1109–C1123 (1997)Google Scholar
  19. W. Mueller-Klieser, Crit. Rev. Oncol. Hematol. 36, 124–139 (2000)CrossRefGoogle Scholar
  20. K.M. Nicholson, M.C. Bibby, R.M. Philips, Eur. J. Cancer 33, 1291–1298 (1997)CrossRefGoogle Scholar
  21. P.L. Olive, R.E. Durand, Cancer Metastasis Rev. 13(2), 121–138 (1994)CrossRefGoogle Scholar
  22. R.M. Sutherland, Science 240, 177–184 (1988)CrossRefGoogle Scholar
  23. R.M. Sutherland, J.A. McCredie, W.R. Inch, J. Natl. Cancer Inst. 46, 113–120 (1971)Google Scholar
  24. D.M. Thompson, K.R. King, K.J. Wieder, M. Toner, M.L. Yarmush, A. Jayaraman, Anal. Chem. 76, 4098–4103 (2004)CrossRefGoogle Scholar
  25. Y. Torisawa, A. Takagi, Y. Nashimoto, T. Yasukawa, H. Shiku, T. Matsue, Biomaterials 28, 559–566 (2006)CrossRefGoogle Scholar
  26. A. Tourovskaia, X. Figueroa-Masot, A. Folch, Lab. Chip. 5, 14–19 (2005)CrossRefGoogle Scholar
  27. J.M. Yuhas, A.P. Li, A.O. Martinez, A.J. Ladman, Cancer Res. 37, 3639–3643 (1977)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Biomolecular Nanotechnology Center, Berkeley Sensor and Actuator Center, Department of BioengineeringUniversity of CaliforniaBerkeleyUSA

Personalised recommendations