Biomedical Microdevices

, Volume 10, Issue 2, pp 153–167 | Cite as

In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system

  • Rui LimaEmail author
  • Shigeo Wada
  • Shuji Tanaka
  • Motohiro Takeda
  • Takuji Ishikawa
  • Ken-ichi Tsubota
  • Yohsuke Imai
  • Takami Yamaguchi


Progress in microfabricated technologies has attracted the attention of researchers in several areas, including microcirculation. Microfluidic devices are expected to provide powerful tools not only to better understand the biophysical behavior of blood flow in microvessels, but also for disease diagnosis. Such microfluidic devices for biomedical applications must be compatible with state-of-the-art flow measuring techniques, such as confocal microparticle image velocimetry (PIV). This confocal system has the ability to not only quantify flow patterns inside microchannels with high spatial and temporal resolution, but can also be used to obtain velocity measurements for several optically sectioned images along the depth of the microchannel. In this study, we investigated the ability to obtain velocity measurements using physiological saline (PS) and in vitro blood in a rectangular polydimethysiloxane (PDMS) microchannel (300 μm wide, 45 μm deep) using a confocal micro-PIV system. Applying this combination, measurements of trace particles seeded in the flow were performed for both fluids at a constant flow rate (Re = 0.02). Velocity profiles were acquired by successive measurements at different depth positions to obtain three-dimensional (3-D) information on the behavior of both fluid flows. Generally, the velocity profiles were found to be markedly blunt in the central region, mainly due to the low aspect ratio (h/w = 0.15) of the rectangular microchannel. Predictions using a theoretical model for the rectangular microchannel corresponded quite well with the experimental micro-PIV results for the PS fluid. However, for the in vitro blood with 20% hematocrit, small fluctuations were found in the velocity profiles. The present study clearly shows that confocal micro-PIV can be effectively integrated with a PDMS microchannel and used to obtain blood velocity profiles along the full depth of the microchannel because of its unique 3-D optical sectioning ability. Advantages and disadvantages of PDMS microchannels over glass capillaries are also discussed.


Microcirculation Confocal micro-PIV PDMS microchannel Red blood cells Mesoscopic blood flow 



This study was supported in part by the following grants: International Doctoral Program in Engineering from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT), “Revolutionary Simulation Software (RSS21)” next-generation IT program of MEXT; Grants-in-Aid for Scientific Research from MEXT and JSPS Scientific Research in Priority Areas (768) “Biomechanics at Micro- and Nanoscale Levels,” Scientific Research (A) No.16200031 “Mechanism of the formation, destruction, and movement of thrombi responsible for ischemia of vital organs”. The authors also thank all members of Esashi, Ono and Tanaka Lab. for their assistance in fabricating the PDMS microchannel.


  1. R. Adrian, Annu. Rev. Fluid Mech. 23, 261–304 (1991)Google Scholar
  2. C. Alonso, A. Pries, O. Kiesslich, D. Lerche, P. Gaehtgens, Am. J. Physiol. 268(1 Pt 2), H25–H32 (1995)Google Scholar
  3. M. Baker, H. Wayland, Microvasc. Res. 7, 131–143 (1974)CrossRefGoogle Scholar
  4. D. Beebe, G. Mensing, G. Walker, Annu. Rev. Biomed. Eng. 4, 261–286 (2002)CrossRefGoogle Scholar
  5. L. Bitsch, L. Olesen, C. Westergaard, H. Bruus, H. Klank, J. Kutter, Exp. Fluids 39, 505–511 (2005)CrossRefGoogle Scholar
  6. J. Borenstein, H. Terai, K. King, E. Weinberg, M. Kaazempur-Mofrad, J. Vacanti, Biomedical Microdevices 4(3), 167–175 (2002)CrossRefGoogle Scholar
  7. G. Born, A. Melling, J. Whitelaw, Biorheology 15, 163–172 (1978)Google Scholar
  8. T. Brown, J. Biomech. 33, 3–14 (2000)CrossRefGoogle Scholar
  9. H. Bruus, Theoretical microfluidics (MIC, Technical University of Denmark, Denmark, 2004)Google Scholar
  10. G. Bugliarello, J. Hayden, Trans. Soc. Rheol. 7, 209–230 (1963)CrossRefGoogle Scholar
  11. C. Caro, T. Pedley, R. Schroter, W. Seed, The mechanics of the circulation (Oxford University Press, 1978)Google Scholar
  12. W. Chang, D. Akin, M. Sedlak, M. Ladisch, R. Bashir, Biomedical Microdevices 5(4), 281–290 (2003)CrossRefGoogle Scholar
  13. S. Chien, S. Usami, R. Skalak, Blood flow in small tubes Handbook of Physiology – The cardiovascular system IV (1984) 217–249Google Scholar
  14. T. Cochrane, J. Earnshaw, A. Love, Med. Biol. Eng. Comput. 19, 589–596 (1981)CrossRefGoogle Scholar
  15. C. Duffy, J. McDonald, O. Schueller, G. Whitesides, Anal. Chem. 70, 4974–4984 (1998)CrossRefGoogle Scholar
  16. S. Einav, R. Berman, P. Fuhro, P. DiGiovanni, S. Fine, J. Fridman, Biorheology 12, 207–210 (1975)Google Scholar
  17. R. Fahraeus, T. Lindqvist, Am. J. Physiol. 96, 562–568 (1931)Google Scholar
  18. M. Faivre, M. Abkarian, K. Bickraj, H. Stone, Biorheology 43, 147–159 (2006)Google Scholar
  19. T. Fujii, Microelectron. Eng. 61–62, 907–914 (2002)CrossRefGoogle Scholar
  20. P. Gaehtgens, Biorheology 24, 367–376 (1987)Google Scholar
  21. P. Gaehtgens, H. Meiselman, H. Wayland, Microvasc. Res. 2, 13–23 (1970)CrossRefGoogle Scholar
  22. S. Gifford, M. Frank, J. Derganc, C. Gabel, R. Austin, T. Yoshida, W. Bitensky, Biophys. J. 84, 623–633 (2003)CrossRefGoogle Scholar
  23. H. Goldsmith, V. Turitto, Tromb. Haemost. 55, 415–435 (1986)Google Scholar
  24. H. Golster, M. Linden, S. Bertuglia, A. Colantuoni, G. Nilsson, F. Sjoberg, Microvasc. Res. 58, 62–73 (1999)CrossRefGoogle Scholar
  25. R. Gomez, R. Bashir, A. Sarikaya, M. Ladish, J. Sturgis, J. Robison, T. Geng, A. Bhunia, H. Apple, S. Wereley, Biomedical Microdevices 3(3), 201–209 (2001)CrossRefGoogle Scholar
  26. G. Holzapfel, G. Sommer, C. Gasser, P. Regitnig, Am. J. Physiol Heart Circ. Physiol. 289, H2048–H2058 (2005)CrossRefGoogle Scholar
  27. H. Kaji, T. Kawashima, M. Nishizawa, Langmuir 22, 10784–10787 (2006)CrossRefGoogle Scholar
  28. G.B. Kim, S.J. Lee, Exp Fluids 41, 195–200 (2006)Google Scholar
  29. H. Kinoshita, M. Oshima, S. Kaneda, T. Fujii, Proceedings of the 9thICMSCLS (Boston, Massachusetts, USA, 2005)Google Scholar
  30. A. Koutsiaris, D. Mathioulakis, S. Tsangaris, Meas. Sci. Technol. 10, 1037–1046 (1999)CrossRefGoogle Scholar
  31. R. Lima, Analysis of the blood flow behavior through microchannels by confocal micro-PIV/PTV system, Doctoral thesis (Tohoku University, Japan, 2007)Google Scholar
  32. R. Lima, S. Wada, K. Tsubota, T. Yamaguchi, Proceedings of the 3rd IASTED ICB—BioMech (Benidorm, Spain, 485, 2005)Google Scholar
  33. R. Lima, S. Wada, K. Tsubota, T. Yamaguchi, Meas. Sci. Technol. 17, 797–808 (2006)CrossRefGoogle Scholar
  34. R. Lima, S. Wada, M. Takeda, K. Tsubota, T. Yamaguchi, J. Biomech. 40, 2752–2757 (2007)CrossRefGoogle Scholar
  35. N. Maeda, Jpn. J. Physiol 46, 1–14 (1996)CrossRefGoogle Scholar
  36. A. Mata, A. Fleischman, S. Roy, Biomedical Microdevices 7(4), 281–293 (2005)CrossRefGoogle Scholar
  37. J. McDonald, G. Whitesides, Acc. Chem. Res 35(7), 491–499 (2002)CrossRefGoogle Scholar
  38. G. Mchedlishvili, N. Maeda, Jpn. J. Physiol 51, 19–30 (2001)CrossRefGoogle Scholar
  39. C. Meinhart, S. Wereley, J. Santiago, J. Fluids Eng 122, 285–289 (2000)CrossRefGoogle Scholar
  40. G. Minas, J. Martins, J. Ribeiro, R. Wolffenbuttel, J. Correia, Sens. Actuators 110, 33–38 (2004)CrossRefGoogle Scholar
  41. J. Moger, S. Matcher, C. Winlove, A. Shore, J. Biomed. Opt. 9(5), 982–994 (2004)CrossRefGoogle Scholar
  42. N. Mortensen, F. Okkels, H. Bruus, Phys. Rev. E 71, 1–4 (2005)Google Scholar
  43. A. Nakano, Y. Sugii, M. Minamiyama, H. Niimi, Clin. Hemorheol. Microcirc. 29, 445–455 (2003)Google Scholar
  44. N. Nguyen, S. Wereley, Fundamentals and applications of microfluidics (Artech House, Inc., Norwood, MA, 2002)zbMATHGoogle Scholar
  45. J. Park, K. Kihm, Opt. Lasers Eng. 44, 208–223 (2006)CrossRefGoogle Scholar
  46. J. Park, C. Choi, K. Kihm, Exp. Fluids 37, 105–119 (2004)Google Scholar
  47. A. Parthasarathi, S. Japee, R. Pittman, Ann Biomed. Eng. 27, 313–325 (1999)CrossRefGoogle Scholar
  48. A. Pries, T. Secomb, Clin. Hemorheol. Microcirc. 29, 143–148 (2003)Google Scholar
  49. A. Pries, T. Secomb, T. Gessner, M. Sperandio, J. Gross, P. Gaehtgens, Circ. Res. 75, 904–915 (1994)Google Scholar
  50. M. Raffel, C. Willert, J. Kompenhans, Particle image velocimetry: a practical guide (Springer, Germany, 1998)Google Scholar
  51. Rika nenpyo, Chronological scientific tables, (National Astronomical Observatory), Maruzen Co., Japan, 1996Google Scholar
  52. J. Santiago, S. Wereley, C. Meinhart, D. Beebe, R. Adrian, Exp Fluids 25, 316–319 (1998)CrossRefGoogle Scholar
  53. T. Secomb, Symp. Soc. Exp. Biol. vol 49 (London, UK, 1995), pp. 305–321Google Scholar
  54. S. Shevkoplyas, S. Gifford, T. Yoshida, M. Bitensky, Microvasc. Res. 65, 132–136 (2003)CrossRefGoogle Scholar
  55. M. Shin, K. Matsuda, O. Ishii, H. Terai, M. Kaazempur-Mofrad, J. Borenstein, M. Detmar, J. Vacanti, Biomedical Microdevices 6(4), 269–278 (2004)CrossRefGoogle Scholar
  56. H. Steiger, R. Aaslid, S. Keller, H. Reulen, Heart Vessels 5(1), 41–46 (1989)CrossRefGoogle Scholar
  57. N. Sutton, M. Tracey, I. Johnston, R. Greenaway, M. Rampling, Microvasc. Res. 53, 272–281 (1997)CrossRefGoogle Scholar
  58. Y. Suzuki, N. Tateishi, M. Soutani, N. Maeda, Microcirculation 3, 49–57 (1996)CrossRefGoogle Scholar
  59. P. Tabeling, Proceedings of the 14th Australasian Fluid Mechanics Conference (Adelaide, Australia, 2001)Google Scholar
  60. S. Takayama, J. McDonald, E. Ostuni, M. Liang, P. Kenis, F. Ismagilov, G. Whitesides, Patterning cells and their environments using multiple laminar fluid flows in capillary networks Proc. Natl. Acad. Sci. 96, 5545–5548 (1999)CrossRefGoogle Scholar
  61. T. Tanaani, S. Otsuki, N. Tomosada, Y. Kosugi, M. Shimizu, H. Ishida, Appl. Opt. 41(22), 4704–4708 (2002)CrossRefGoogle Scholar
  62. G. Tangelder, D. Slaaf, M. Muijtjens, T. Arts, M. Egbrink, R. Reneman, Circ. Res. 59, 505–514 (1986)Google Scholar
  63. T. Thorsen, S. Maerkl, S. Quake, Science 298, 580–584 (2002)CrossRefGoogle Scholar
  64. M. Toner, D. Irimia, Annu. Rev. Biomed. Eng. 7, 77–103 (2005)CrossRefGoogle Scholar
  65. K. Tsukada, H. Minamitami, E. Sekizuka, C. Oshio, Physiol. Meas. 21(4), 459–471 (2000)CrossRefGoogle Scholar
  66. W. Uijttewaal, E. Nijhof, R. Heethaar, J. Biomech. 27, 35–42 (1994)CrossRefGoogle Scholar
  67. M. Unger, H. Chou, T. Thorsen, A. Scherer, S. Quake, Science 288, 113–116 (2000)CrossRefGoogle Scholar
  68. P. Vennemann, K. Kiger, R. Lindken, B. Groenendijk, S. Stekelenburg-de Vos, T. Hagen, N. Ursem, R. Poelmann, J. Westerweel, B. Hierk, J. Biomech. 39, 1191–1200 (2006)CrossRefGoogle Scholar
  69. S. Wilhelm, B. Grobler, M. Gluch, H. Heinz, Confocal laser scanning microscopy: principles (Carl Zeiss, Germany, 2003)Google Scholar
  70. C. Willert, M. Raffel, J. Kompenhans, B. Stasicki, C. Kahler, Flow Meas. Instrum. 7, 247–256 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Rui Lima
    • 1
    • 2
    • 6
  • Shigeo Wada
    • 3
  • Shuji Tanaka
    • 4
  • Motohiro Takeda
    • 1
    • 5
  • Takuji Ishikawa
    • 1
  • Ken-ichi Tsubota
    • 1
  • Yohsuke Imai
    • 1
  • Takami Yamaguchi
    • 1
  1. 1.Department of Bioengineering and Robotics, Graduate School of EngineeringTohoku UniversitySendaiJapan
  2. 2.Department of Mechanical TechESTiG, Braganca Polyt.BragancaPortugal
  3. 3.Department of Mechanical Science and Bioengineering, Graduate School of Engineering ScienceOsaka UniversityToyonakaJapan
  4. 4.Department of Nanomechanics, Graduate School of EngineeringTohoku UniversitySendaiJapan
  5. 5.Division of Surgical Oncology, Graduate School of MedicineTohoku UniversitySendaiJapan
  6. 6.Yamaguchi and Ishikawa Lab. (PFSL), Department of Bioengineering and Robotics, Graduate School of EngineeringTohoku UniversitySendaiJapan

Personalised recommendations