Biomedical Microdevices

, Volume 10, Issue 1, pp 11–20

A cell culturing system that integrates the cell loading function on a single platform and evaluation of the pulsatile pumping effect on cells

  • J. Y. Kim
  • H. Park
  • K. H. Kwon
  • J. Y. Park
  • J. Y. Baek
  • T. S. Lee
  • H. R. Song
  • Y. D. Park
  • S. H. Lee
Article

Abstract

In this paper, we present a novel microfluidic system with pulsatile cell storing, cell-delivering and cell culturing functions on a single PDMS platform. For this purpose, we have integrated two reservoirs, a pulsatile pumping system containing two soft check valves, which were fabricated by in situ photopolymerization, six switch valves, and three cell culture chambers all developed through a simple and rapid fabrication process. The sample volume delivered per stroke was 120 nl and the transported volume was linearly related to the pumping frequency. We have investigated the effect of the pulsatile pneumatic micropumping on the cells during transport. For this purpose, we pumped two types of cell suspensions, one containing human breast adenocarcinoma cells (MCF-7) and the other mesenchymal stem cells (hMSCs) derived from bone marrow. The effect of pulsatile pumping on both cell types was examined by short and long-term culture experiments. Our results showed that the characteristics of both cells were maintained; they were not damaged by the pumping system. Evaluations were carried out by morphological inspection, viability assay and immunophenotyping analysis. The delivered MCF-7 cells and hMSCs spread and proliferated onto the gelatin coated cell culture chamber. This total micro cell culture system can be applied to cell-based high throughput screening and for co-culture of different cells with different volume.

Keywords

Microchannel Cell culture Microfluidic Micropump PDMS In situ photopolymerization 

References

  1. D.R. Albrecht,V.L. Tsang, R.L. Saha, S.N. Bhatia, Lab. Chip. 5, 111–118 (2005)CrossRefGoogle Scholar
  2. J.Y. Baek, J.Y. Park, J.I. Ju, T.S. Lee, S.H. Lee, J. Micromech. Microeng. 15, 1015–1020 (2005)CrossRefGoogle Scholar
  3. F.K. Balagadde, L. You, C.L. Hansen, F.H. Arnold, S.R. Quake, Science 309, 137–140 (2005)CrossRefGoogle Scholar
  4. M. Bani-Yaghoub, R. Tremblay, R. Voicu, G. Mealing, R. Monette, C. Py, K. Faid, M. Sikorska, Biotechnol. Bioeng. 92(3), 336–345 (2005)CrossRefGoogle Scholar
  5. A.D Bershadsky, N.Q. Balaban, B. Geiger, Annu. Rev. Cell Dev. Biol. 19, 677–695 (2003)CrossRefGoogle Scholar
  6. S.N. Bhatia, M.L. Yarmush, M. Toner, J. Biomed. Materi. Res. 34, 189–199 (1997)CrossRefGoogle Scholar
  7. C.S. Chen, M. Mrksich, S. Huang, G.M. Whitesides, D.E. Ingber, Science 276, 1425–1428 (1997)CrossRefGoogle Scholar
  8. J. El-Ali, P.K. Sorger, K.F. Jensen, Nature 442, 403–411 (2006)CrossRefGoogle Scholar
  9. M.C. Ford, J.P. Bertram, S.R. Hynes, M. Michaud, Q. Li, M. Young, S.S. Segal, J.A. Madri, E.B. Lavik, Proc. Natl. Acad. Sci. 103, 4391–4396 (2006)CrossRefGoogle Scholar
  10. L.G. Griffith, G. Naughton, Science 295, 1009–1016 (2002)CrossRefGoogle Scholar
  11. W. Gu, X. Zhu, N. Futai, B.S. Cho, S. Takayama, PNAS 101(45), 15861–15866 (2004)CrossRefGoogle Scholar
  12. P.J. Hung, P.J. Lee, P. Sabounchi, R. Lin, L.P. Lee, Biotechnol. Bioeng. 89, 1–8 (2005)CrossRefGoogle Scholar
  13. N.L. Jeon, D.T. Chiu, C.J. Wargo, H. Wu, I.S. Choi, J.R. Anderson, G.M. Whitesides, Biomed. Microdev. 4(2), 117–121 (2002)CrossRefGoogle Scholar
  14. A. Khademhosseini, R. Langer, J. Borenstein, J.P. Vacanti, Proc. Natl. Acad. Sci. U S A 103, 2480–2487 (2006)CrossRefGoogle Scholar
  15. J.Y. Kim, J.Y. Baek, K.H. Lee, Y.D. Park, K. Sun, T.S. Lee, S.H. Lee, Lab. Chip. 6, 1091–1094 (2006)CrossRefGoogle Scholar
  16. W.G. Koh, L.J. Itle, M.V. Pishko, Anal. Chem. 75, 5783–5789 (2003)CrossRefGoogle Scholar
  17. E. Leclerc, Y. Sakai, T. Fujii, Biomed. Microdev. 5(2), 109–114 (2003)CrossRefGoogle Scholar
  18. V.A. Liu, S.N. Bhatia, Biomedical. Microdevices. 4(4), 257–266 (2002)CrossRefGoogle Scholar
  19. W.F. Liu, C.S. Chen, Materials Today 8, 28–35 (2005)CrossRefGoogle Scholar
  20. S. Ostrovidov, J. Jiang, Y. Sakai, T. Fujii, Biomed. Microdev. 6(4), 279–287 (2004)CrossRefGoogle Scholar
  21. J.Y. Park, H.J. Oh, D.J. Kim, J.Y. Baek, S.H. Lee, J. Micromech. Microeng. 16, 656–663 (2006)CrossRefGoogle Scholar
  22. T.H. Park, M.L. Shuler, Biotechnol. Prog. 19, 243–253 (2003)CrossRefGoogle Scholar
  23. A. Prokop, Z. Prokop, D. Schaffer, E. Kozlov, J. Wikswo, D. Cliffel, F. Baudenbacher, Biomed. Microdev. 6(4), 325–339 (2004)CrossRefGoogle Scholar
  24. M. Stangegaard, S. Petronis, A. M. Jørgensen, C. B. V. Christensenc, M. Dufva, Lab. Chip. 6, 1045–1051 (2006)CrossRefGoogle Scholar
  25. S. Takayama, E. Ostuni, P. LeDuc, K. Naruse, D.E. Ingber, G.M. Whitesides, Nature 411, 1016 (2001)CrossRefGoogle Scholar
  26. M.A. Unger, H.P. Chou, T. Thorsen, A. Scherer, S.R. Quake, Science 288, 113–116 (2000)CrossRefGoogle Scholar
  27. G.M. Walker, M.S. Ozers, D.J. Beebe, Biomed. Microdev 4(3), 161–166 (2002)CrossRefGoogle Scholar
  28. C. Yamahata, C. Vandevyver, F. Lacharme, P. Izewska, H. Vogel, R. Freitagb, M.A.M. Gijs, Lab. Chip. 5, 1083–1088 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • J. Y. Kim
    • 1
    • 4
  • H. Park
    • 1
    • 4
  • K. H. Kwon
    • 1
    • 4
  • J. Y. Park
    • 1
    • 4
  • J. Y. Baek
    • 1
    • 4
  • T. S. Lee
    • 2
  • H. R. Song
    • 3
  • Y. D. Park
    • 1
    • 4
  • S. H. Lee
    • 1
    • 4
  1. 1.Department of Biomedical EngineeringKorea UniversitySeoulSouth Korea
  2. 2.Department of Biomedical EngineeringChungbuk National UniversityCheongjuSouth Korea
  3. 3.Department of Orthopedic SurgeryKorea UniversitySeoulSouth Korea
  4. 4.Korea Artificial Organ CenterKorea UniversitySeoulSouth Korea

Personalised recommendations