Biomedical Microdevices

, Volume 10, Issue 1, pp 1–9 | Cite as

An integrated microfluidic chip for the analysis of biochemical reactions by MALDI mass spectrometry

  • Sang-Ho Lee
  • Chang-Soo Lee
  • Byung-Gee Kim
  • Yong-Kweon Kim
Article

Abstract

Using an integrated microfluidic chip combined with mass spectrometry is an attractive method for parallel and multiple analyses because of its inherent simplicity, low sample consumption, and high sensitivity. To realize an effective microfluidic chip for the rapid analysis of biochemical reactions by matrix assisted laser desorption/ionization (MALDI)–mass spectrometry (MS), the basic operations on microfluids, namely loading, metering, cutting, transporting, mixing, and injecting, must be integrated. This study describes an integrated microfluidic chip with MALDI–MS that performs the on-chip analysis of biochemical reactions, such as enzymatic reactions. For on-chip multiple reactions, we present sequential fluidic manipulations with nanoliter-sized droplets, based on the precise control of wettability and the capillary pressure of a microchannel. The microfluidic chip we have developed successfully performed biochemical reactions and can dispense a droplet of a few hundred nanoliters on the MALDI target plate according to the designed multiple reaction procedure. Finally, the MS spectrum showed accurate and clear characteristic peaks for reaction products. Our investigations into reaction efficiency showed that the microfluidic chip could reduce the reaction time to one third, and the volume to one hundredth, of off-chip methods using conventional labware such as the micropipette and Eppendorf tube.

Keywords

Microfluidics MALDI Mass spectrometry Biochemical reaction Nanoliter 

References

  1. M. Brivio, R.H. Fokkens, W. Verboom, D.N. Reinhoudt, Anal. Chem. 74(16), 3972 (2002)CrossRefGoogle Scholar
  2. M.A. Burns, B.N. Johnson, S.N. Brahmasandra, K. Handique, J.R. Webster, M. Krishnan, T.S. Sammarco, P.M. Man, D. Jones, D. Heldsinger, C.H. Mastrangelo, D.T. Burke, Science 282(5388), 484 (1998)CrossRefGoogle Scholar
  3. B.-K. Cho, H.J. Cho, S.H. Park, H. Yun, B.-G. Kim, Biotechnol. Bioeng. 81(7), 783 (2003)CrossRefGoogle Scholar
  4. J. de Mello, Lab Chip 1(1), 7N (2001)CrossRefMathSciNetGoogle Scholar
  5. A.J. de Mello, N. Beard, Lab Chip 3(1), 11N (2003)CrossRefGoogle Scholar
  6. S. Ekström, D. Ericsson, P. Önnerfjord, M. Bengtsson, J. Nilsson, G. Marko-Varga, T. Laurell, Anal. Chem. 73(2), 214 (2001)CrossRefGoogle Scholar
  7. E. Gelpi, J. Mass Spectrom. 37(3), 241 (2002)CrossRefGoogle Scholar
  8. M. Gustafsson, D. Hirschberg, C. Palmberg, H. Jörnvall, T. Bergman, Anal. Chem. 76(2), 345 (2004)CrossRefGoogle Scholar
  9. K. Handique, M.A. Burns, J. Micromech. Microeng. 11(5), 548 (2001)CrossRefGoogle Scholar
  10. D.J. Harrison, P.G. Glavina, A. Manz, Sens. Actuators, B, Chem. 10(2), 107 (1993)CrossRefGoogle Scholar
  11. J. Kameoka, R. Orth, B. Ilic, D. Czaplewski, T. Wachs, H.G. Craighead, Anal. Chem. 74(22), 5897 (2002)CrossRefGoogle Scholar
  12. J. Khandurina, T.E. McKnight, S.C. Jacobson, L.C. Waters, R.S. Foote, J.M. Ramsey, Anal. Chem. 72(13), 2995 (2000)CrossRefGoogle Scholar
  13. Y. Kikutani, T. Horiuchi, K. Uchiyama, H. Hisamoto, M. Tokeshi, T. Kitamori, Lab Chip 2(4), 188 (2002)CrossRefGoogle Scholar
  14. E.T. Lagally, C.A. Emrich, R.A. Mathies, Lab Chip 1(2), 102 (2001)CrossRefGoogle Scholar
  15. S.-H. Lee, C.-S. Lee, B.-G. Kim, Y.-K. Kim, J. Micromech. Microeng. 13(1), 89 (2003)CrossRefGoogle Scholar
  16. S.-H. Lee, S.I. Cho, C.-S. Lee, B.-G. Kim, Y.-K. Kim, Sens. Actuators, B, Chem. 110(1), 164 (2005)CrossRefMathSciNetGoogle Scholar
  17. R.H. Liu, M.A. Stremler, K.V. Sharp, M.G. Olsen, J.G. Santiago, R.J. Adrian, H. Aref, D.J. Beebe, J. Microelectromech. Syst. 9(2), 190 (2000)CrossRefGoogle Scholar
  18. R.W. Nelson, D. Nedelkov, K.A. Tubbs, Electrophoresis 21(6), 1155 (2000)CrossRefGoogle Scholar
  19. K. Sato, A. Hibara, M. Tokeshi, H. Hisamoto, T. Kitamori, Adv. Drug Deliv. Rev. 55(3), 379 (2003)CrossRefGoogle Scholar
  20. T. Thorsen, S.J. Maerkl, S.R. Quake, Science 298(5593), 580 (2002)CrossRefGoogle Scholar
  21. T. Vilkner, D. Janasek, A. Manz, Anal. Chem. 76(12), 3373 (2004)CrossRefGoogle Scholar
  22. A.R. Wheeler, H. Moon, C.-J. Kim, J.A. Loo, R.L. Garrell, Anal. Chem. 76(16), 4833 (2004)CrossRefGoogle Scholar
  23. M. Yamada, M. Seki, Anal. Chem. 76(4), 895 (2004)CrossRefGoogle Scholar
  24. H. Yun, B.-Y. Hwang, J.-H Lee, B.-G. Kim, Appl. Environ. Microbiol. 71(8), 4220 (2005)CrossRefGoogle Scholar
  25. B. Zhang, F. Foret, B.L. Karger, Anal. Chem. 73(11), 2675 (2001)CrossRefGoogle Scholar
  26. Y.-S. Zhou, L.-J. Zhang, X.-R. Zeng, J.J. Vital, X.-Z. You, J. Mol. Struct. 553(1), 25 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Sang-Ho Lee
    • 1
  • Chang-Soo Lee
    • 2
  • Byung-Gee Kim
    • 3
  • Yong-Kweon Kim
    • 4
  1. 1.Microsystem Team, Korea Institute of Industrial TechnologyCheoanSouth Korea
  2. 2.Department of Chemical EngineeringChungnam National UniversityDaejeonSouth Korea
  3. 3.School of Chemical and Biological EngineeringSeoul National UniversitySeoulSouth Korea
  4. 4.School of Electrical Engineering and Computer ScienceSeoul National UniversitySeoulSouth Korea

Personalised recommendations