Biomedical Microdevices

, Volume 9, Issue 6, pp 855–862

Generation of monodisperse alginate microbeads and in situ encapsulation of cell in microfluidic device

  • Chang-Hyung Choi
  • Jae-Hoon Jung
  • Young Woo Rhee
  • Dong-Pyo Kim
  • Sang-Eun Shim
  • Chang-Soo Lee
Article

Abstract

A microfluidic method for the in situ production of monodispersed alginate hydrogels using chaotic mixing is described. Aqueous droplets comprising of alginate and calcium as a cross-linking agent were formed as an immiscible continuous phase, and then the alginate and calcium in the droplet came into contact and were rapidly mixed. Gelation of the hydrogel was achieved in situ by the chaotic mixing of the droplets in the microfluidic device. Important operating parameters included: the capillary number (Ca) and the flow rate of the continuous phase, which mainly influenced the formation of three distinctive flow regimes, such as fluctuation, stable droplets, and laminar flow. Under the stable formation of droplets regime, monodispersed alginate microbeads having a narrow size distribution (below 3% of CV) were produced in the microfluidic device and the size of the microbeads, ranging from 60 to 95 μm, could be easily modulated by varying the flow rate, viscosity, and interfacial tension. In addition, this approach can be applied to the encapsulation of yeast cells in alginate hydrogels with a high monodispersity. This simple microfluidic technique for the production of monodispersed hydrogels and encapsulation of biomolecules shows strong potential for use in biosensors, cell sensors, drug delivery systems, and cell transplantation applications.

Keywords

Microfluidic device Alginate Monodisperse Mixing Encapsulation 

References

  1. M. Ben-Moshe, V.L. Alexeev, S.A. Asher, Anal. Chem. 78, 5149 (2006)CrossRefGoogle Scholar
  2. S.M. Borisov, O.S. Wolfbeis, Anal. Chem. 78, 5094 (2006)CrossRefGoogle Scholar
  3. S. Brahim, D. Narinesingh, A. Guiseppi-Elie, Biosens. Bioelectron. 17, 973 (2002)CrossRefGoogle Scholar
  4. A. Desai, W.S. Kisaalita, C. Keith, Z.Z. Wu, Biosens. Bioelectron. 21, 1483 (2006)CrossRefGoogle Scholar
  5. A. Dove, Nat. Biotechnol. 20, 339 (2002)CrossRefGoogle Scholar
  6. R. Dreyfus, P. Tabeling, H. Willaime, Phys. Rev. Lett. 90, 144505 (2003)CrossRefGoogle Scholar
  7. S. Frykman, F. Srienc, Biotechnol. Bioeng. 59, 214 (1998)CrossRefGoogle Scholar
  8. A.V. Goponenko, S.A. Asher, J. Am. Chem. Soc. 127, 10753 (2005)CrossRefGoogle Scholar
  9. J.P. Halle, F.A. Leblond, J.F. Pariseau, P. Jutras, M.J. Brabant, Y. Lepage, Cell. Transplant. 3, 365 (1994)Google Scholar
  10. K.S. Huang, T.H. Lai, Y.C. Lin, Lab. Chip. 6, 954 (2006)CrossRefGoogle Scholar
  11. H.L. Ma, T.H. Chen, L. Low-Tone Ho, S.C. Hung, J. Biomed. Mater. Res. A. 74, 439 (2005)Google Scholar
  12. Z. Nie, S. Xu, M. Seo, P.C. Lewis, E. Kumacheva, J. Am. Chem. Soc. 127, 8058 (2005)CrossRefGoogle Scholar
  13. L.W. Norton, E. Tegnell, S.S. Toporek, W.M. Reichert, Biomaterials. 26, 3285 (2005)CrossRefGoogle Scholar
  14. S. Sakai, K. Kawabata, T. Ono, H. Ijima, K. Kawakami, Biotechnol. Prog. 21, 994 (2005)CrossRefGoogle Scholar
  15. C.M. Silva, A.J. Ribeiro, I.V. Figueiredo, A.R. Goncalves, F. Veiga, Int. J. Pharm. 311, 1 (2006)CrossRefGoogle Scholar
  16. H. Song, J.D. Tice, R.F. Ismagilov, Angew. Chem. Int. Ed. Engl. 42, 768 (2003)CrossRefGoogle Scholar
  17. S. Sugiura, T. Oda, Y. Izumida, Y. Aoyagi, M. Satake, A. Ochiai, N. Ohkohchi, M. Nakajima, Biomaterials 26, 3327 (2005)CrossRefGoogle Scholar
  18. S. Sugiura, T. Oda, Y. Aoyagi, R. Matsuo, T. Enomoto, K. Matsumoto, T. Nakamura, M. Satake, A. Ochiai, N. Ohkohchi, M. Nakajima, Biomed. Microdevices. 9, 91 (2007)CrossRefGoogle Scholar
  19. Y.C. Tan, K. Hettiarachchi, M. Siu, Y.R. Pan, A.P. Lee, J. Am. Chem. Soc. 128, 5656 (2006)CrossRefGoogle Scholar
  20. J.D. Tice, A.D. Lyon, R.F. Ismagilov, Anal. Chim. Acta. 507, 73 (2004)CrossRefGoogle Scholar
  21. S. Wiggins, J.M. Ottino, Philos. Transact. A Math Phys. Eng. Sci. 362, 937 (2004)MATHCrossRefMathSciNetGoogle Scholar
  22. B. Xu, H. Iwata, M. Miyamoto, A.N. Balamurugan, Y. Murakami, W. Cui, M. Imamura, K. Inoue, Cell Transplant. 10, 403 (2001)Google Scholar
  23. J.H. Xu, G.S. Luo, S.W. Li, G.G. Chen, Lab. Chip. 6, 131 (2006)CrossRefGoogle Scholar
  24. S. Xu, Z. Nie, M. Seo, P. Lewis, E. Kumacheva, H.A. Stone, P. Garstecki, D.B. Weibel, I. Gitlin, G.M. Whitesides, Angew. Chem. Int. Ed. Engl. 44, 724 (2005)CrossRefGoogle Scholar
  25. H. Zhang, E. Tumarkin, R. Peerani, Z. Nie, R.M. Sullan, G.C. Walker, E. Kumacheva, J. Am. Chem. Soc. 128, 12205 (2006)CrossRefGoogle Scholar
  26. M. Zourob, S. Mohr, A.G. Mayes, A. Macaskill, N. Perez-Moral, P.R. Fielden, N.J. Goddard, Lab. Chip. 6, 296 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Chang-Hyung Choi
    • 1
  • Jae-Hoon Jung
    • 1
  • Young Woo Rhee
    • 1
  • Dong-Pyo Kim
    • 2
  • Sang-Eun Shim
    • 3
  • Chang-Soo Lee
    • 1
  1. 1.Department of Chemical EngineeringChungnam National UniversityDaejeonSouth Korea
  2. 2.Department of Applied ChemistryChungnam National UniversityDaejeonSouth Korea
  3. 3.Department of Chemical EngineeringInha UniversityIncheonSouth Korea

Personalised recommendations