Biomedical Microdevices

, Volume 9, Issue 5, pp 729–736

Gene transcript amplification from cell lysates in continuous-flow microfluidic devices

  • Asensio Gonzalez
  • Doina Ciobanu
  • Michael Sayers
  • Noel Sirr
  • Tara Dalton
  • Mark Davies


Continuous-flow analysis, where samples circulate encapsulated in a carrier fluid is an attractive alternative to batch processing for high-throughput devices that use the polymerase chain reaction (PCR). Challenges of continuous-flow prototypes include the hydrodynamic and biological incompatibility of the carrier fluid, microchannel fouling, sample carryover and the integration of a nucleic acid extraction and reverse transcription step. We tested two homemade, continuous-flow thermocycler microdevices for amplification of reverse-transcribed messages from cell lysates without nucleic acid extraction. Amplification yield and specificity were assessed with state-of-the-art, real-time quantitative equipment. Carryover contamination between consecutive samples was absent. Amplification specificity and interference by genomic DNA were optimized by primer design. Robust detection of the low-copy transcript CLIC5 from 18 cells per microliter is demonstrated in cultured lymphoblasts. The results prove the concept that the development of micro-total analysis systems (μ-TAS) for continuous gene expression directly from cell suspensions is viable with current technology.


PCR Gene expression Microfluidic devices Continuous-flow μ-TAS 


  1. W.A. Al-Soud, P. Radstrom, J. Clin. Microbiol. 39, 485–493 (2001)CrossRefGoogle Scholar
  2. L.R. Bisset, S. Bosbach, Z. Tomasik, H. Lutz, J. Schupbach, J. Boni, J. Virol. Methods 91, 149–155 (2001)CrossRefGoogle Scholar
  3. M. Brivio, W. Verboom, D.N. Reinhoudt, Lab. Chip. 6, 329–344 (2006)CrossRefGoogle Scholar
  4. M. Burgener, U. Candrian, M. Gilgen, J. Virol. Methods 108, 165–170 (2003)CrossRefGoogle Scholar
  5. P. Chomczynski, M. Rymaszewski, BioTechniques 40, 454, 456, 458 (2006)Google Scholar
  6. K.D. Dorfman, M. Chabert, J.H. Codarbox, G. Rousseau, P. de Cremoux, J.L. Viovy, Anal. Chem. 77, 3700–3704 (2005)CrossRefGoogle Scholar
  7. W.M. Gallagher, O.E. Bergin, M. Rafferty, Z.D. Kelly, I.M. Nolan, E.J. Fox, A.C. Culhane, L. McArdle, M.F. Fraga, L. Hughes, C.A. Currid, F. O’Mahony, A. Byrne, A.A. Murphy, C. Moss, S. McDonnell, R.L. Stallings, J.A. Plumb, M. Esteller, R. Brown, P.A. Dervan, D.J. Easty, Carcinogenesis 26, 1856–1867 (2005)CrossRefGoogle Scholar
  8. A.B. Goulter, D.W. Harmer, K.L. Clark, BMC Genomics 7, 34 (2006)CrossRefGoogle Scholar
  9. F. Han, S.J. Lillard, Anal. Chem. 72, 4073–4079 (2000)CrossRefGoogle Scholar
  10. M. Hashimoto, P.C. Chen, M.W. Mitchell, D.E. Nikitopoulos, S.A. Soper, M.C. Murphy, Lab. Chip. 4, 638–645 (2004)CrossRefGoogle Scholar
  11. J. Hoorfar, P. Wolffs, P. Radstrom, Apmis 112, 808–814 (2004)CrossRefGoogle Scholar
  12. R.J. Klebe, G.M. Grant, A.M. Grant, M.A. Garcia, T.A. Giambernardi, G.P. Taylor, BioTechniques 21, 1094–1100 (1996)Google Scholar
  13. L.J. Kricka, P. Wilding, Anal. Bioanal. Chem. 377, 820–825 (2003)CrossRefGoogle Scholar
  14. M. Kubista, J.M. Andrade, M. Bengtsson, A. Forootan, J. Jonak, K. Lind, R. Sindelka, R. Sjoback, B. Sjogreen, L. Strombom, A. Stahlberg, N. Zoric, Mol. Aspects Med. 27, 95–125 (2006)CrossRefGoogle Scholar
  15. L.A. Legendre, J.M. Bienvenue, M.G. Roper, J.P. Ferrance, J.P. Landers, Anal. Chem. 78, 1444–1451 (2006)CrossRefGoogle Scholar
  16. D.E. Macfarlane, C.E. Dahle, Nature 362, 186–188 (1993)CrossRefGoogle Scholar
  17. H. Matsunaga, T. Anazawa, E.S. Yeung, Electrophoresis 24, 458–465 (2003)CrossRefGoogle Scholar
  18. T.W. Myers, D.H. Gelfand, Biochemistry 30, 7661–7666 (1991)CrossRefGoogle Scholar
  19. P.J. Obeid, T.K. Christopoulos, H.J. Crabtree, C.J. Backhouse, Anal. Chem. 75, 288–295 (2003)CrossRefGoogle Scholar
  20. N. Park, S. Kim, J.H. Hahn, Anal. Chem. 75, 6029–6033 (2003)CrossRefGoogle Scholar
  21. B. Pastorino, M. Bessaud, M. Grandadam, S. Murri, H.J. Tolou, C.N. Peyrefitte, J. Virol. Methods 124, 65–71 (2005)CrossRefGoogle Scholar
  22. M.G. Roper, C.J. Easley, J.P. Landers, Anal. Chem. 77, 3887–3893 (2005)CrossRefGoogle Scholar
  23. I. Schneegass, J.M. Kohler, J. Biotechnol. 82, 101–121 (2001)Google Scholar
  24. E. Segal, N. Friedman, N. Kaminski, A. Regev, D. Koller, Nat. Genet. 37(Suppl), S38–S45 (2005)CrossRefGoogle Scholar
  25. S.S. Shevkoplyas, T. Yoshida, L.L. Munn, M.W. Bitensky, Anal. Chem. 77, 933–937 (2005)CrossRefGoogle Scholar
  26. M.D. To, S.J. Done, M. Redston, I.L. Andrulis, Am. J. Pathol. 153, 47–51 (1998)Google Scholar
  27. P.L. Urban, D.M. Goodall, N.C. Bruce, Biotechnol. Adv. 24, 42–57 (2006)CrossRefGoogle Scholar
  28. E.J. Walsh, C. King, D. Ciobanu, R. Grimes, A. Gonzalez (ed.), Biomed. Microdev. 8, 59–64 (2006)CrossRefGoogle Scholar
  29. M.L. Wong, J.F. Medrano, Biotechniques 39, 75–85 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Asensio Gonzalez
    • 2
  • Doina Ciobanu
    • 1
  • Michael Sayers
    • 1
  • Noel Sirr
    • 1
  • Tara Dalton
    • 1
  • Mark Davies
    • 1
  1. 1.Stokes Research InstituteUniversity of LimerickLimerickIreland
  2. 2.Northern Ireland Regional Histocompatibility and Immunogenetics Laboratory, Blood Transfusion ServiceBelfast City HospitalBelfastUK

Personalised recommendations