Advertisement

Biomedical Microdevices

, Volume 9, Issue 6, pp 951–957 | Cite as

Assembly and packaging of a three-axis micro accelerometer used for detection of heart infarction

  • Kristin ImenesEmail author
  • Knut Aasmundtveit
  • Ellen Marie Husa
  • Jan Olav Høgetveit
  • Steinar Halvorsen
  • Ole Jakob Elle
  • Peyman Mirtaheri
  • Erik Fosse
  • Lars Hoff
Article

Abstract

In coronary artery bypass grafting there is a risk of graft occlusion which may result in myocardial infarction. A three-axis acceleration sensor may give additional information about heart function during surgery and the first postoperative days. This paper describes the assembly and packaging of a three-axis micro acceleration sensor for use in clinical trials. The sensor was connected to a cable for power supply and signal output and moulded in silicone. Testing of the encapsulation showed leakage currents well below the 10 μA limit for direct cardiac applications. A hydrogen peroxide gas plasma method was used for sterilization. In animal experiments the sensor was sutured to the heart and no fatigue failures ensued due to the cycling strain forces from the heart. The sensor has been qualified for clinical trials.

Keywords

Micro accelerometer Silicone Moulding Heart infarction Assembly Packaging 

Notes

Acknowledgments

This work was supported by the Research Council of Norway.

References

  1. J. Black, Biological Performance of Materials. Fundamentals of Biocompatibility, (Dekker, New York, 1999)Google Scholar
  2. T. Edvardsen, H. Skulstad, S. Aakhus, S. Urheim, H. Ihlen, J. Am. Coll. Cardiol. 37, 726–730 (2001)CrossRefGoogle Scholar
  3. O.J. Elle, S. Halvorsen, M.G. Gulbrandsen, L. Aurdal, A. Bakken, E. Samset, H. Dugstad, E. Fosse, Physiol. Meas. 26(4), 429–440 (2005)CrossRefGoogle Scholar
  4. L.A. Feldman, H.K. Hui, Medical Device & Diagnostic Industry Magazine (Dec 1997) p. 57Google Scholar
  5. P.K. Hol, P.S. Lingaas, R. Lundblad, K.A. Rein, K. Vatne, H.-J. Smith, S. Nitter-Hauge, E. Fosse, Ann. Thorac. Surg. 78, 502–505 (2004)CrossRefGoogle Scholar
  6. B.D. Ratner, Biomaterials Science: An Introduction to Materials in Medicine, (Academic, San Diego, CA, 1996)Google Scholar
  7. A.D. Russell, W.B. Hugo, G.A.J. Ayliffe, A.P. Fraise, P.A. Lambert, Russel, Hugo & Ayliffe’s Principles and Practice of Disinfection, Preservation & Sterilization, (Blackwell, Oxford, 2004)Google Scholar
  8. H. Skulstad, S. Urheim, T. Edvardsen, K. Andersen, E. Lyseggen, T. Vartdal, H. Ihlen, O.A. Smiseth, J. Am. Coll. Cardiol. 47, 1672–1682 (2006)CrossRefGoogle Scholar
  9. H.P. Theres, D.R. Kaiser, S.D. Nelson, M. Glos, T. Leuthold, G. Baumann, S. Sowelam, T.J. Sheldon, L.E.E. Stylos, Pacing Clin. Electrophysiol. 27, 621–625 (2004)CrossRefGoogle Scholar
  10. J.C. Wood, A.J. Buda, D.T. Barry, IEEE Trans. Biomed. Eng. 39, 730–740 (1992)CrossRefGoogle Scholar
  11. J.C. Wood, M.P. Festen, M.J. Lim, A.J. Buda, D.T. Barry, J. Appl. Physiol. 76, 291–302 (1994)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Kristin Imenes
    • 1
    Email author
  • Knut Aasmundtveit
    • 1
  • Ellen Marie Husa
    • 1
  • Jan Olav Høgetveit
    • 2
  • Steinar Halvorsen
    • 2
  • Ole Jakob Elle
    • 2
  • Peyman Mirtaheri
    • 2
  • Erik Fosse
    • 2
  • Lars Hoff
    • 1
  1. 1.Vestfold University CollegeBorreNorway
  2. 2.Rikshospitalet-Radiumhospitalet Medical CentreUniversity of OsloOsloNorway

Personalised recommendations