Advertisement

Biomedical Microdevices

, Volume 9, Issue 5, pp 675–679 | Cite as

Integrated siphon-based metering and sedimentation of whole blood on a hydrophilic lab-on-a-disk

  • J. Steigert
  • T. Brenner
  • M. Grumann
  • L. Riegger
  • S. Lutz
  • R. Zengerle
  • J. Ducrée
Article

Abstract

In this paper, we present a novel and fully integrated centrifugal microfluidic “lab-on-a-disk” for rapid colorimetric assays in human whole blood. All essential steps comprising blood sampling, metering, plasma extraction and the final optical detection are conducted within t = 150 s in passive, globally hydrophilized structures which obviate the need for intricate local hydrophobic surface patterning. Our technology features a plasma extraction structure (V = 500 nL, CV < 5%) where the purified plasma (c RBC < 0.11%) is centrifugally separated, metered by an overflow and subsequently extracted by a siphon-based principle through a hydrophilic extraction channel into the detection chamber.

Keywords

Centrifugal microfluidics Siphon Sedimentation Metering Sample preparation Whole blood 

Notes

Acknowledgement

The authors are grateful to the partial support by the Ministry of Science, Research and the Arts of the German federal state of Baden-Wuerttemberg (contract 24-720.431-1-7/2) and the good cooperation with Jobst-Technologies.

References

  1. P. Auroux, D. Reyes, D. Iossifidis, A. Manz, Anal. Chem. 74, 2637–2652 (2002)CrossRefGoogle Scholar
  2. J. Ducrée, R. Zengerle, FlowMap - Microfluidics roadmap for the life sciences; (Books on Demand GmbH, Norderstedt, Germany, ISBN 3-8334-0744-1, www.microfluidics-roadmap.com. 2004)
  3. D.C. Duffy, H.L. Gills, J. Lin, N.F. Sheppard, G.J. Kellogg, Anal. Chem. 71(20), 4669–4678 (1999)CrossRefGoogle Scholar
  4. G. Ekstrand, C. Holmquist, A.E. Oerlefors, B. Hellmann, A. Larsson, P. Andersson, in Proc. μTAS conf. (Kluwer, Dodrecht, 2000), pp 311–314Google Scholar
  5. D. Figeys, D. Pinto, Anal. Chem. 72(9), 330–335A (2000)CrossRefGoogle Scholar
  6. M. Grumann, A. Geipel, L. Riegger, R. Zengerle, J. Ducrée, LOC. 5, 560–565 (2005)Google Scholar
  7. M. Grumann, J. Steigert, L. Riegger, I. Moser, B. Enderle, K. Riebeseel, G. Urban, R. Zengerle, J. Ducrée, Biomedical Microdevices 8, 209–214 (2006)Google Scholar
  8. M. Gustafsson, D. Hirschberg, C. Palmberg, H. Jörnvall, T. Bergmann, Anal. Chem. 76(2), 253–502 (2004)CrossRefGoogle Scholar
  9. M. Inganäs, G. Ekstrand, J. Enström, H. Dérand, P. Andersson, in Proc. μTAS conf. (Kluwer, Dodrecht, 2001), pp 91–92Google Scholar
  10. M. Madou, G. Kellogg, in Proc. SPIE. (SPIE Press, Bellingham, 1998) 3259, pp 80–93Google Scholar
  11. M. Madou, Y. Lu, S. Lai, J. Lee, S. Daunert, in Proc. μTAS conf. (Kluwer, Dodrecht, 2000) pp 565–570Google Scholar
  12. M. Madou, L. Lee, S. Daunert, S. Lai, C. Shih, Biomed. Microdevices. 3(3), 245–254 (2001a)CrossRefGoogle Scholar
  13. M. Madou, Y. Lu, S. Lai, C. Koh, L.J. Lee, B.R. Wenner, Sens. Actuators A. 91, 301–306 (2001b)CrossRefGoogle Scholar
  14. M.R. Mc Neely, M.K. Spute, N.A. Tusneem, A.R. Oliphjat, in Proc. SPIE, (SPIE Press, Bellingham, 1999), 3877, pp 210–220Google Scholar
  15. R.E. Oosterbroek, A. van den Berg, Lab-on-a-Chip: Miniaturized Systems for (Bio)chemical Analysis and Synthesis. (Elsevier Science, Amsterdam, 2003)Google Scholar
  16. D. Reyes, D. Iossifidis, P. Auroux, A. Manz, Anal. Chem. 74(12), 2623–2636 (2002)CrossRefGoogle Scholar
  17. C.T. Schembri, U.S. Patent, 5,473,603 (1993)Google Scholar
  18. C.T. Schembri, T. Burd, A. Kopf-Sill, L. Shea, B. Braynin, J. Autom. Chem. 17(3), 99–104 (1995)Google Scholar
  19. T.H. Schulte, R.L. Bardell, P.H. Weigl, Clin. Chim. Acta 321, 1–10 (2002)CrossRefGoogle Scholar
  20. S. Sia, V. Linder, B. Parviz, A. Siegel, G. Whitesides, Angew. Chem., Int. 43, 498–502 (2004)CrossRefGoogle Scholar
  21. J. Steigert, M. Grumann, T. Brenner, L. Riegger, J. Harter, R. Zengerle, J. Ducrée, LOC. 6, 1040–1044 (2006a)Google Scholar
  22. J. Steigert, M. Grumann, M. Dube, W. Streule, L. Riegger, T. Brenner, P. Koltay, K. Mittmann, R. Zengerle, J. Ducrée. S&A A. 103–131, 228–233 (2006b)Google Scholar
  23. J. Steigert, T. Brenner, M. Grumann, L. Riegger, R. Zengerle, J. Ducrée, in Proc. of MEMS conf. (Institute of Electrical and Electronics Engineers Inc., Piscataway, 2006c) pp 418–421Google Scholar
  24. H.A. Stone, A.D. Stroock, A. Adjari, Annu. Rev. Fluid Mech. 36, 381–411 (2004)CrossRefGoogle Scholar
  25. G. Thorsén, G. Ekstrand, U. Selditz, S.R. Wallenborg, P. Andersson, in Proc. μTAS conf. (Transducer Research Foundation, San Diego, 2003) pp 457–460Google Scholar
  26. T. Thorsen, S. Markl, S. Quake, Anal. Chem. 298, 580–584 (2002)Google Scholar
  27. T. Vilkner, D. Janasek, A. Manz, Anal. Chem. 76, 3373–3386 (2004)CrossRefGoogle Scholar
  28. J. Zeng, D. Banerjee, M. Deshpande, J. Gilbert, D.C. Duffy, D.J. Kellog, in Proc. μTAS conf. (Kluwer, Dodrecht, Netherlands, 2000), pp 579–582Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • J. Steigert
    • 1
  • T. Brenner
    • 1
  • M. Grumann
    • 1
  • L. Riegger
    • 1
  • S. Lutz
    • 1
  • R. Zengerle
    • 1
    • 2
  • J. Ducrée
    • 2
  1. 1.Laboratory for MEMS Applications, Department for Microsystems Engineering (IMTEK)University of FreiburgFreiburgGermany
  2. 2.HSG-IMITVillingen-SchwenningenGermany

Personalised recommendations