Advertisement

Biomedical Microdevices

, Volume 9, Issue 4, pp 587–595 | Cite as

An ultra-thin PDMS membrane as a bio/micro–nano interface: fabrication and characterization

  • Abel L. Thangawng
  • Rodney S. Ruoff
  • Melody A. Swartz
  • Matthew R. GlucksbergEmail author
Article

Abstract

We report a method for making ultra-thin PDMS membrane devices. Freely suspended membranes as thin as 70 nm have been fabricated. Bulging tests were performed with a custom built fluidic cell to characterize large circular membranes. The fluidic cell allows the media (such as air or water) to wet one side of the membrane while maintaining the other side dry. Pressure was applied to the membrane via a liquid manometer through the fluidic cell. The resulting load-deflection curves show membranes that are extremely flexible, and they can be reproducibly loaded and unloaded. Such devices may potentially be used as mechanical and chemical sensors, and as a bio-nano/micro interface to study cellular mechanics in both static and dynamic environments.

Keywords

Microfabrication PDMS membrane Bulging test Ultra sensitive membrane 

Notes

Acknowledgement

Funding for this project was provided by NIH (HL075217) and NSF (BES-0134551).

References

  1. D. Armani1, C. Liu 1, N. Aluru, in 12th IEEE International Conference on Micro Electro Mechanical Systems (MEMS ’99), pp. 222–227, 1999Google Scholar
  2. N.Q. Balaban, U.S. Schwarz, D. Riveline, P. Goichberg, G. Tzur, I. Sabanay, D. Mahalu, S. Safran, A. Bershadsky, L. Addadi, B. Geiger, Nat. Cell Biol. 3, 466–472 (2001)CrossRefGoogle Scholar
  3. I.B. Bischofs, U.S. Schwarz, Proc. Natl. Acad. Sci. U.S.A. 100(16), 9274–9279 (2003)CrossRefGoogle Scholar
  4. I.B. Bischofs, S.A. Safran, U.S. Schwarz, Phys. Rev., E 69, 021911 (2004)CrossRefGoogle Scholar
  5. X.Q. Brown, K. Ookawa, J.Y. Wong, Biomaterials 26, 3123–3129 (2005)CrossRefGoogle Scholar
  6. K. Burton, D.L. Taylor, Nature 450–454 (1997)Google Scholar
  7. S.G. Charati, S.A. Stern, Macromolecules 31, 5529–5535 (1998)CrossRefGoogle Scholar
  8. M.N. De Silva, R. Desai, D.J. Odde, Biomedical Devices 6(3), 219–222 (2004)Google Scholar
  9. O. du Roure, A. Saez, A. Buguin, R.H. Austin, P. Chavrier, P. Siberzan, B. Ladoux, Proc. Natl. Acad. Sci. U.S.A. 102(7), 2390–2395 (2005)CrossRefGoogle Scholar
  10. D.T. Eddington, W.C. Crone, D.J. Beebe, in 7th International Conference on Miniaturized Chemical and Biochemical Analysts Systems, Squaw Valley, CA, pp. 1089–1092, 2003Google Scholar
  11. D.S. Gray, J. Tien, C.S. Chen, J. Biomed. Mater. Res. 66A, 605–614 (2003)CrossRefGoogle Scholar
  12. A.K. Harris, P. Wild, D. Stopak, Science 208(4440), 177–179 (1980)CrossRefGoogle Scholar
  13. C. Jiang, S. Markutsya, Y. Pikus, V.V. Tsukruk, Nat. Mater. 3, 721–728 (2004)CrossRefGoogle Scholar
  14. D.-Y. Khang, H.H. Lee, Langmuir 20, 2445–2448 (2004)CrossRefGoogle Scholar
  15. Y.S. Kim, K.Y. Suh, H.H. Lee, Appl. Phys. Lett. 79(14), 2285–2287 (2001)CrossRefGoogle Scholar
  16. C.-M. Lo, H.-B. Wang, M. Dembo, Y.-l. Wang, Biophys. J. 79, 144–152 (2000)CrossRefGoogle Scholar
  17. J.C. Lotters y, W. Olthuis, P.H. Veltink, P. Bergveld, J. Micromechanics Microengineering 7, 145–147 (1997)CrossRefGoogle Scholar
  18. E. Ostuni, R. Kane, C.S. Chen, D.E. Ingber, G.M. Whitesides, Langmuir 16, 7811–7819 (2000)CrossRefGoogle Scholar
  19. J.Y. Pan, P. Lin, F. Maseeh, S.D. Senturia, in Tech. Digest IEEE Solid-State Sensors Workshop, pp. 70–73, 1990Google Scholar
  20. S.L. Peterson, A. McDonald, P.L. Gourley, D.Y. Sasaki, J. Biomed. Mater. Res., Part A 72(1), 10–18 (2005)CrossRefGoogle Scholar
  21. R. Singhvi, A. Kumar, G.P. Lopez, G.N. Stephanopoulos, D.I. Wang, G.M. Whitesides, D.E. Ingber, Science 264, 696–698 (1994)CrossRefGoogle Scholar
  22. J.L. Tan, J. Tien, D.M. Pirone, D.S. Gray, K. Bhadriraju, C.S. Chen, Proc. Natl. Acad. Sci. U.S.A. 100(4), 1484–1489 (2003)CrossRefGoogle Scholar
  23. A.L. Thangawng, J. Lee, in Proceedings of IMECE04, 2004 International Mechanical Engineering Congress, Anaheim, CA, 13–20 November 2004Google Scholar
  24. A.L. Thangawng, M.A. Swartz, M.R. Glucksberg, R.S. Ruoff, Small 3, 132–138 (2007)CrossRefGoogle Scholar
  25. S. Timoshenko, S. Woinowsky-Krieger, Theory of plates and shells (McGraw-Hill, New York, 1959)Google Scholar
  26. H.-B. Wang, M. Dembo, S.K. Hanks, Y.-l. Wang, Proc. Natl. Acad. Sci. U.S.A. 98(20), 11295–11300 (2001)CrossRefGoogle Scholar
  27. N. Wang, E. Ostuni, G.M. Whitesides, D.E. Ingber, Cell Motil. Cytoskelet. 52, 97–106 (2002)CrossRefGoogle Scholar
  28. C.M. Waters, M.R. Glucksberg, E.P. Lautenschlager, C.-W. Lee, R.M. Van Matre, R.J. Warp, U. Savla, K.E. Healy, B. Moran, D.G. Castner, J.P. Bearinger, J. Appl. Physiol. 91, 1600–1610 (2001)Google Scholar
  29. Y. Zhao, X. Zhang, Mater. Res. Soc. Symp. Proc. 845, AA5.10.1–AA5.10.6 (2005)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Abel L. Thangawng
    • 1
  • Rodney S. Ruoff
    • 1
  • Melody A. Swartz
    • 2
  • Matthew R. Glucksberg
    • 2
    Email author
  1. 1.Mechanical Engineering DepartmentNorthwestern UniversityEvanstonUSA
  2. 2.Biomedical Engineering DepartmentNorthwestern UniversityEvanstonUSA

Personalised recommendations