Biomedical Microdevices

, Volume 9, Issue 5, pp 657–663

Microvessel scaffold with circular microchannels by photoresist melting

  • Gou-Jen Wang
  • Kuan-Hsuan Ho
  • Shan-hui Hsu
  • Kuan-Pu Wang
Article

Abstract

In this research, a new process that integrates the photoresist melting and soft lithography techniques to fabricate microvessel scaffolds with circular microchannels is proposed. The commercial software COMSOL Multiphysics (formerly known as FEMLAB) is the sought after procedure to optimize the structure of the microvessel scaffold. The photolithographic technique is applied to fabricate the negative photoresist THB-120N (JSR Inc.) based microstructure that is followed by melting to the final replica mold with its structure having convex semicircle cross-section. The replica mold is hence used to replicate PDMS to the top and bottom plates of a microvessel scaffold. These two half plates are bonded after having surface treatment by inductive coupled plasma (ICP) to form the complete scaffold with circular microchannels. Finally, the bovine endothelial cells (BEC) are cultured into the scaffold. Encouraging results by semi-dynamic seeding have been observed in this context, depicting the survival of the cells in the scaffold for up to 4 weeks.

Keywords

Microvessel scaffold Circular microchannel Photoresist melting Inductive coupled plasma bonding 

References

  1. J. Borenstein, H. Terai, K.R. King, E.J. Weinberg, M. Kaazempur-Mofrad, J.P. Vacanti, Biomed. Microdevices 4(3), 167–175 (2002)CrossRefGoogle Scholar
  2. C. Fidkowski, M. Kaazempur-Mofrad, J. Borenstein, J.P. Vacanti, R. Langer, Y. Wang, Tissue Eng. 11(1/2), 302–309 (2005)CrossRefGoogle Scholar
  3. S.S. Kulkarni, R. Orth, M. Ferrari, N.I. Moldovan, Biosens. Bioelectron. 19, 1401–1407 (2004)CrossRefGoogle Scholar
  4. R. Langer, J.P. Vacanti, Science 260, 920–926 (1993)CrossRefGoogle Scholar
  5. N.I. Moldovan, M. Ferrari, Arch. Pathol. Lab. Med. 126(3), 320–324 (2002)Google Scholar
  6. N.I. Moldovan, S.S. Kulkarni, M. Ferrari, Sens. Mater. 14(4), 179–187 (2002)Google Scholar
  7. M. Shin, K. Matsuda, O. Ishii, H. Terai, M. Kaazempur-Mofrad, J. Borenstein, M. Detmar, J.P. Vacanti, Biomed. Microdevices 6(4), 269–278 (2004)CrossRefGoogle Scholar
  8. G.J. Wang, C.L. Chen, S.H. Hsu, Y.L. Chiang, J. Microsystem Tech. 12(1–2), 120–127 (2005)CrossRefGoogle Scholar
  9. G.J. Wang, Y.F. Hsu, Biomed. Microdevices 8(1), 51–58 (2006)CrossRefGoogle Scholar
  10. G.J. Wang, Y.F. Hsu, S.H. Hsu, R.H. Horng, Biomed. Microdevices 8(1), 17–28 (2006)CrossRefGoogle Scholar
  11. Y. Xia, G.M. Whitesides, Annu. Rev. Mater. Sci. 28, 153–194 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Gou-Jen Wang
    • 1
    • 3
  • Kuan-Hsuan Ho
    • 1
  • Shan-hui Hsu
    • 2
    • 3
  • Kuan-Pu Wang
    • 2
  1. 1.Department of Mechanical EngineeringNational Chung Hsing UniversityTaichungTaiwan
  2. 2.Department of Chemical EngineeringNational Chung Hsing UniversityTaichungTaiwan
  3. 3.Institute of Biomedical EngineeringNational Chung Hsing UniversityTaichungTaiwan

Personalised recommendations