Biomedical Microdevices

, Volume 9, Issue 4, pp 545–554

Membrane-activated microfluidic rotary devices for pumping and mixing

  • Hao-Yu Tseng
  • Chih-Hao Wang
  • Wang-Ying Lin
  • Gwo-Bin Lee


Microfluidic devices are operated at a low-Reynolds-number flow regime such that the transportation and mixing of fluids are naturally challenging. There is still a great need to integrate fluid control systems such as pumps, valves and mixers with other functional microfluidic devices to form a micro-total-analysis-system. This study presents a new pneumatic microfluidic rotary device capable of transporting and mixing two different kinds of samples in an annular microchannel by using MEMS (Micro-electro-mechanical-systems) technology. Pumping and mixing can be achieved using a single device with different operation modes. The micropump has four membranes with an annular layout and is compact in size. The new device has a maximum pumping rate of 165.7 μL/min at a driving frequency of 17 Hz and an air pressure of 30 psi. Experimental data show that the pumping rate increases as higher air pressure and driving frequency are applied. In addition, not only can the microfluidic rotary device work as a peristaltic pumping device, but it also is an effective mixing device. The performance of the micromixer is extensively characterized. Experimental data indicate that a mixing index as high as 96.3% can be achieved. The developed microfluidic rotary device can be easily integrated with other microfluidic devices due to its simple and reliable PDMS fabrication process. The development of the microfluidic rotary device can be promising for micro-total-analysis-systems.


Microfluidics Micropump Micromixer MEMS 





Charge coupled device


Initial fluorescent concentration


Normalized concentration (=C/Co)


Normalized complete mixed concentration (=0.5)




Enzyme-linked immunosorbent assay


Electromagnetic valve


Driving frequency of the electromagnetic valve (Hz)


Driving frequency of the rotary micromixer (Hz)


Fluorescein isothiocyanate


Channel width


Liquid crystal display








Longitudinal coordinate


Normalized transversal coordinate (=y/h)


Transversal coordinate


Mixing index


  1. C.C. Chang, R.J. Yang, J. Micromechanics Microengineering 14, 550 (2004)CrossRefGoogle Scholar
  2. H.P. Chou, M.A. Unger, A. Scherer, S.R. Quake, in Proceedings of the Solid State Actuator and Sensor Workshop, 2000Google Scholar
  3. H.P. Chou, M.A. Unger, S.R. Quake, Biomed. Microdevices 3, 323 (2001)CrossRefGoogle Scholar
  4. D.C. Duffy, H.L. Gillis, J. Lin, N.F. Sheppard, G.J. Kellogg, Anal. Chem. 15, 4669 (1999)CrossRefGoogle Scholar
  5. A.Y. Fu, H.P. Chou, C. Spence, F.H. Arnold, S.R. Quake, Anal. Chem. 74, 2451 (2002)CrossRefGoogle Scholar
  6. I. Glasgow, N. Aubry, Lab Chip 3, 114 (2003)CrossRefGoogle Scholar
  7. P. Gravesen, Y. Branebjerg, O.S. Jensen, J. Micromechanics Microengineering 3, 168 (1993)CrossRefGoogle Scholar
  8. B.L. Gray, D. Jaeggi, N.J. Mourlas, B.P. Van Drieenhuizen, K.R. Williams, N. Maluf, G.T.A. Kovacs, Sens. Actuators, A 77, 57 (1998)CrossRefGoogle Scholar
  9. S. Hardt, F. Schonfeld, AIChE J. 49, 578 (2003)CrossRefGoogle Scholar
  10. V. Hessel, S. Hardt, H. Lowe, F. Schonfeld, AIChE J. 49, 566 (2003)CrossRefGoogle Scholar
  11. P. Hinsmann, J. Frank, P. Svasek, M. Harasek, B. Lendl, Lab Chip 1, 16 (2001)CrossRefGoogle Scholar
  12. C.C. Huang, S.B. Huang, G.B. Lee, J. Micromechanics Microengineering 16, 2265 (2006)CrossRefGoogle Scholar
  13. B. Husband, M. Bu, A.G.R. Evans, T. Melvin, J. Micromechanics Microengineering 14, 64 (2004)CrossRefGoogle Scholar
  14. H. Katoua, R. Miyakea, K. Kambarab, K. Kawaseb, H. Uchidab, Chem. Eng. Sci. 60, 5519 (2005)CrossRefGoogle Scholar
  15. M. Kochy, D. Chatelainz, A.G.R. Evan, A. Brunnschweiler, J. Micromechanics Microengineering 8, 123 (1998)CrossRefGoogle Scholar
  16. C.Y. Lee, G.B. Lee, L.M. Fu, H.K. Lee, R.J. Yang, J. Micromechanics Microengineering 14, 1390 (2004)CrossRefGoogle Scholar
  17. C.A. Li, T.N. Chen, Sens. Actuators, B 106, 871 (2005)CrossRefGoogle Scholar
  18. Y. Lin, G.J. Gerfen, D.L. Rousseau, S.R. Yeh, Am. Chem. Soc. 75, 5381 (2003)Google Scholar
  19. J. Liu, M. Enzelberger, S.R. Quake, Electrophoresis 23, 1531 (2002)CrossRefGoogle Scholar
  20. R. Miyake, K. Tsuzuki, T. Takagi, K. Imai, in The 10th IEEE Workshop on MEMS, 1997, p. 102Google Scholar
  21. M.S. Munson, P. Yager, Anal. Chim. Acta 507, 63 (2004)CrossRefGoogle Scholar
  22. N.T. Nguyen, Z. Wu, J. Micromechanics Microengineering 15, 1 (2005)CrossRefGoogle Scholar
  23. S.J. Park, J.K. Kim, J. Park, S. Chung, C. Chung, J.K. Chang, J. Micromechanics Microengineering 14, 6 (2004)CrossRefGoogle Scholar
  24. S.K. Sia, G.M. Whitesides, Electrophoresis 24, 3563 (2003)CrossRefGoogle Scholar
  25. H. Song, M.R. Bringer, J.D. Tice, C.J. Gerdts, R.F. Ismagilov, Appl. Phys. Lett. 83, 4664 (2003)CrossRefGoogle Scholar
  26. A.D. Stroock, S.K.W. Dertinger, A. Ajdari, I. Mezic, H.A. Stone, G.M. Whitesides, Science 295, 647 (2002)CrossRefGoogle Scholar
  27. H. Suzuki, C.M. Ho, Microelectromechanical Syst. 13, 779 (2004)CrossRefGoogle Scholar
  28. H. Tsai, L. Lin, Sens. Actuators, A 97, 665 (2002)CrossRefGoogle Scholar
  29. M.A. Unger, H.P. Chou, T. Thorsen, A. Scherer, S.R. Quake, Science 288, 113 (2000)CrossRefGoogle Scholar
  30. H.Z. Wang, P. Iovenitti, E. Harvey, S. Masood, Smart Mater. Struct. 11, 662 (2002)CrossRefGoogle Scholar
  31. C.H. Wang, G.B. Lee, Biosens. Bioelectron. 21, 419 (2005)CrossRefGoogle Scholar
  32. A. Yamazaki, M. Sendoh, K. Ishiyama, K.I. Arai, T. Hayase, IEEE Trans. Magn. 39, 3289 (2003a)CrossRefGoogle Scholar
  33. A. Yamazaki, M. Sendoh, K. Ishiyama, T. Hayase, K.I. Arai, Sens. Actuators, A 105, 103 (2003b)CrossRefGoogle Scholar
  34. Z. Yang, H. Goto, M. Matsumoto, R. Maeda, Electrophoresis 21, 116 (2000)CrossRefGoogle Scholar
  35. S. Zeng, C.H. Chen, J.C. Mikkelson Jr., J.G. Santiago, Sens. Actuators, B 79, 107 (2001)CrossRefGoogle Scholar
  36. B. Ziaie, A. Baldi, M. Lei, Y. Gu, R.A. Siegel, Adv. Drug Deliv. Rev. 56, 145 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Hao-Yu Tseng
    • 1
  • Chih-Hao Wang
    • 1
  • Wang-Ying Lin
    • 1
  • Gwo-Bin Lee
    • 1
  1. 1.Department of Engineering ScienceNational Cheng Kung UniversityTainanTaiwan

Personalised recommendations