Biomedical Microdevices

, Volume 9, Issue 5, pp 637–645 | Cite as

Microfluidic devices for size-dependent separation of liver cells

  • Masumi Yamada
  • Kyoko Kano
  • Yukiko Tsuda
  • Jun Kobayashi
  • Masayuki Yamato
  • Minoru Seki
  • Teruo Okano


Liver is composed of various kinds of cells, including hepatic parenchymal cells (hepatocytes) and nonparenchymal cells, and separation of these cells is essential for cellular therapies and pharmacological and metabolic studies. Here, we present microfluidic devices for purely hydrodynamic and size-dependent separation of liver cells, which utilize hydrodynamic filtration. By continuously introducing cell suspension into a microchannel with multiple side-branch channels, cells smaller than a specific size are removed from the mainstream, while large cells are focused onto a sidewall in the microchannel and then separated into two or three groups. Two types of PDMS-glass hybrid microdevices were fabricated, and rat liver cells were successfully separated. Also, cell size, morphology, viability and several cell functions were analyzed, and the separation performances of the microfluidic devices were compared to that of a conventional centrifugal technique. The results showed that the presented microfluidic devices are low-cost and suitable for clinical use, and capable of highly functional separation with relatively high-speed processing.


Liver cell Hepatocyte Hydrodynamic filtration Microfluidic device Separation 



This research was supported in part by the Core Research for Evolution Science and Technology from the Japan Science and Technology Agency, and by Grant-in-aid for JSPS Fellowship. We are grateful to Ms. Chinatsu Kohno for her technical assistance.

Supplementary material


  1. H. Andersson, A. van den Berg, Sens. Actuators B 92, 315 (2003)CrossRefGoogle Scholar
  2. K. Asahina, M. Shiokawa, T. Ueki, C. Yamasaki, A. Aratani, C. Tateno, K. Yoshizato, Biochem. Biophys. Res. Commun. 342, 1160 (2006)CrossRefGoogle Scholar
  3. P.A. Auroux, D. Iossifidis, D.R. Reyes, A. Manz, Anal. Chem. 74, 2637 (2002)CrossRefGoogle Scholar
  4. D.C. Duffy, J.C. McDonald, O.J.A. Schueller, G.M. Whitesides, Anal. Chem. 70, 4974 (1998)CrossRefGoogle Scholar
  5. J. El-Ali, P.K. Sorger, K.F. Jensen, Nature 442, 403 (2006)CrossRefGoogle Scholar
  6. K. Hosokawa, K. Sato, N. Ichikawa, M. Maeda, Lab Chip 4, 181 (2004)CrossRefGoogle Scholar
  7. L.R. Huang, E.C. Cox, R.H. Austin, J.C. Sturm, Science 304, 987 (2004)CrossRefGoogle Scholar
  8. B.J. Kane, M.J. Zinner, M.L. Yarmush, M. Toner, Anal. Chem. 78, 4291 (2006)CrossRefGoogle Scholar
  9. S. Katayama, C. Tateno, T. Asahara, K. Yoshizato, Am. J. Pathol. 158, 97 (2001)Google Scholar
  10. D.L. Knook, E.C. Sleyster, Exp. Cell Res. 99, 444 (1976)CrossRefGoogle Scholar
  11. D.L. Knook, A.M. Seffelaar, A.M. de Leeuw, Exp. Cell Res. 139, 468 (1982)CrossRefGoogle Scholar
  12. B.L. Kreamer, J.L. Staecker, N. Sawada, G.L. Sattler, M.T.S. Hsia, H.C. Pitot, In Vitro Cell. Dev. Biol. 22, 201 (1986)CrossRefGoogle Scholar
  13. T. Mitaka, M. Mikami, G.L. Sattler, H.C. Pitot, Y. Mochizuki, Hepatology 16, 440 (1992)CrossRefGoogle Scholar
  14. O. Morin, F. Goulet, C. Normand, in Cell Biology Reviews (Springer International, New York, 1988), pp. 1–69Google Scholar
  15. L. Mossin, H. Blankson, H. Huitfeldt, P.O. Seglen, Exp. Cell Res. 214, 551 (1994)CrossRefGoogle Scholar
  16. S. K. Murthy, P. Sethu, G. Vunjak-Novakovic, M. Toner, M. Radisic, Biomed. Microdev. 8, 231 (2006)CrossRefGoogle Scholar
  17. K.H. Nam, W.J. Chang, H. Hong, S.M. Lim, D.I. Kim, Y.M. Koo, Biomed. Microdev. 7, 189 (2005)CrossRefGoogle Scholar
  18. M. Nilsson, T. Berg, Biochim. Biophys. Acta 497, 171 (1977)Google Scholar
  19. K. Ohashi, F. Park, M.A. Kay, J. Mol. Med. 79, 617 (2001)CrossRefGoogle Scholar
  20. P.O. Seglen, Methods Cell Biol. 13, 29 (1976)CrossRefGoogle Scholar
  21. P. Sethu, A. Sin, M. Toner, Lab Chip 6, 83 (2006)CrossRefGoogle Scholar
  22. S.S. Shevkoplyas, T. Yoshida, L.L. Munn, M.W. Bitensky, Anal. Chem. 77, 933 (2005)CrossRefGoogle Scholar
  23. S.H. Sigal, S. Gupta, D.F. Gebhard Jr., P. Holst, D. Neufeld, L.M. Reid, Differentiation 59, 35 (1995)CrossRefGoogle Scholar
  24. B. Singh, B. Borrebaek, H. Osmundsen, Acta Physiol. Scand. 117, 497 (1983)CrossRefGoogle Scholar
  25. J. Takagi, M. Yamada, M. Yasuda, M. Seki, Lab Chip 5, 778 (2005)CrossRefGoogle Scholar
  26. C. Tateno, K. Yoshizato, Am. J. Pathol. 149, 1593 (1996)Google Scholar
  27. Y. Tsuda, A. Kikuchi, M. Yamato, G.P. Chen, T. Okano, Biochem. Biophys. Res. Commun. 348, 937 (2006)CrossRefGoogle Scholar
  28. M. Yamada, M. Seki, Lab Chip 5, 1233 (2005)CrossRefGoogle Scholar
  29. M. Yamada, M. Seki, Anal. Chem. 78, 1357 (2006)CrossRefGoogle Scholar
  30. M. Yamada, V. Kasim, M. Nakashima, J. Edahiro, M. Seki, Biotechnol. Bioeng. 88, 489 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Masumi Yamada
    • 1
  • Kyoko Kano
    • 1
  • Yukiko Tsuda
    • 2
  • Jun Kobayashi
    • 1
  • Masayuki Yamato
    • 1
  • Minoru Seki
    • 3
  • Teruo Okano
    • 1
  1. 1.Institute of Advanced Biomedical Engineering and ScienceTokyo Women’s Medical UniversityTokyoJapan
  2. 2.Graduate School of Pure and Applied SciencesUniversity of TsukubaIbarakiJapan
  3. 3.Department of Chemical Engineering, Graduate School of EngineeringOsaka Prefecture UniversityOsakaJapan

Personalised recommendations