Biomedical Microdevices

, Volume 9, Issue 4, pp 451–463 | Cite as

A model for predicting magnetic particle capture in a microfluidic bioseparator

  • E. P. Furlani
  • Y. Sahoo
  • K. C. Ng
  • J. C. Wortman
  • T. E. Monk


A model is presented for predicting the capture of magnetic micro/nano-particles in a bioseparation microsystem. This bioseparator consists of an array of conductive elements embedded beneath a rectangular microfluidic channel. The magnetic particles are introduced into the microchannel in solution, and are attracted and held by the magnetic force produced by the energized elements. Analytical expressions are obtained for the dominant magnetic and fluidic forces on the particles as they move through the microchannel. These expressions are included in the equations of motion, which are solved numerically to predict particle trajectories and capture time. This model is well-suited for parametric analysis of particle capture taking into account variations in particle size, material properties, applied current, microchannel dimensions, fluid properties, and flow velocity.


Bioseparation Magnetic-based bioseparation Microfluidic bioseparation Magnetophoretic bioseparation High gradient magnetic separation Micro total assay system 


  1. K.J. Binns, P.J. Lawrenson, C.W. Trowbridge, The Analytical and Numerical Solution of Electric and Magnetic Fields (Wiley, New York, 1992)Google Scholar
  2. J.-W. Choi, C.H. Ahn, S. Bhansali, H.T. Henderson, Sens. Actuators B 68, 34 (2000)CrossRefGoogle Scholar
  3. J.-W. Choi, T.M. Liakopoulos, Biosens. Bioelectron. 16, 409 (2001)CrossRefGoogle Scholar
  4. D. Fletcher, IEEE Trans. Magn. 27, 3655 (1991)CrossRefGoogle Scholar
  5. E.P. Furlani, Permanent Magnet and Electromechanical Devices; Materials, Analysis and Applications (Academic, New York, 2001)Google Scholar
  6. E.P. Furlani, J. Appl. Phys. 99(2), 024912.1 (2006)CrossRefGoogle Scholar
  7. E.P. Furlani, J. Phys. D. Appl. Phys 40, 1313 (2007)CrossRefGoogle Scholar
  8. E.P. Furlani, K.C. Ng, Phys. Rev. E 73, 061919 (2006)CrossRefGoogle Scholar
  9. E.P. Furlani, Y. Sahoo, J. Phys. D Appl. Phys. 39(9), 1724 (2006)CrossRefGoogle Scholar
  10. E.J. Furlani, E.P. Furlani, J. Magn. Magn. Mat. 312, 187 (2007)CrossRefGoogle Scholar
  11. R. Gerber, M. Takayasum, F.J. Friedlander, IEEE Trans Magn 19(5), 2115 (1983)CrossRefGoogle Scholar
  12. M.A.M. Gijs, Microfluid Nanofluid 1, 22 (2004)Google Scholar
  13. K.-H. Han, A.B. Frazier, J. Micromech. Sys. 14(6), 1422 (2005)CrossRefGoogle Scholar
  14. N. Ichikawa, K. Hosokawa, R. Maeda, J. Colloid Interface Sci. 280, 155 (2004)CrossRefGoogle Scholar
  15. R.S. Molday, S.P. Yen, A. Rembaum, Nature 268, 437 (1997)CrossRefGoogle Scholar
  16. Q.A. Pankhurst, J. Connolly, S.K. Jones, J. Dobson, J. Phys. D Appl. Phys. 36, R167 (2003)CrossRefGoogle Scholar
  17. I. Safarýk, M. Safarýkova, in Scientific and Clinical Applications of Magnetic Carriers, ed. by U. Hafeli, W. Schutt, J. Teller, M. Zborowski (Plenum, New York, 1997), p. 323Google Scholar
  18. M. Zborowski, C.B. Fuh, R. Green, L. Sun, J.J. Chalmers, Anal. Chem. 67, 3702 (1995)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • E. P. Furlani
    • 1
  • Y. Sahoo
    • 1
  • K. C. Ng
    • 1
  • J. C. Wortman
    • 2
  • T. E. Monk
    • 3
  1. 1.Institute for Lasers, Photonics and BiophotonicsUniversity at Buffalo (SUNY)BuffaloUSA
  2. 2.Department of PhysicsHarvey Mudd CollegeClaremontUSA
  3. 3.Department of PhysicsTruman State UniversityKirksivilleUSA

Personalised recommendations