Biomedical Microdevices

, Volume 8, Issue 3, pp 263–269 | Cite as

DNA counterion current and saturation examined by a MEMS-based solid state nanopore sensor

  • Hung Chang
  • Bala Murali Venkatesan
  • Samir M. Iqbal
  • G. Andreadakis
  • F. Kosari
  • G. Vasmatzis
  • Dimitrios Peroulis
  • Rashid Bashir
Article

Abstract

Reports of DNA translocation measurements have been increasing rapidly in recent years due to advancements in pore fabrication and these measurements continue to provide insight into the physics of DNA translocations through MEMS based solid state nanopores. Specifically, it has recently been demonstrated that in addition to typically observed current blockages, enhancements in current can also be measured under certain conditions. Here, we further demonstrate the power of these nanopores for examining single DNA molecules by measuring these ionic currents as a function of the applied electric field and show that the direction of the resulting current pulse can provide fundamental insight into the physics of condensed counterions and the dipole saturation in single DNA molecules. Expanding on earlier work by Manning and others, we propose a model of DNA counterion ionic current and saturation of this current based on our experimental results. The work can have broad impact in understanding DNA sensing, DNA delivery into cells, DNA conductivity, and molecular electronics.

Keywords

Nanopore DNA counterions Single molecule 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.M. Bezrukov, Journal of Membrane Biology 174, 1 (2000).MathSciNetCrossRefGoogle Scholar
  2. H. Chang, F. Kosari, G. Andreadakis, M.A. Alam, G. Vasmatzis, and R. Bashir, Nano Letters 4, 1551 (2004).CrossRefGoogle Scholar
  3. H. Chang, S.M. Iqbal, E.A. Stach, A.H. King, N.J. Zaluzec, and R. Bashir, Applied Physics Letters 88, 103109 (2006).CrossRefGoogle Scholar
  4. P. Chen, T. Mitsui, D.B. Farmer, J. Golovchenko, R.G. Gordon, and D. Branton, Nano Letters 4, 1333 (2004).CrossRefGoogle Scholar
  5. P. Chen, J. Gu, E. Brandin, Y. Kim, Q. Wand, and D. Branton, Nano Letters 4, 2293 (2004).CrossRefGoogle Scholar
  6. S. Diekmann, W. Hillen, M. Jung, R.D. Wells, and D. Porschke, Biophysic Chemistry 15, 157 (1982).CrossRefGoogle Scholar
  7. S. Diekmann, M. Jung, and M.J. Teubner, Journal of Chemical Physics 80, 1259 (1984).CrossRefGoogle Scholar
  8. R. Fan, K. Rohit, M. Yue, D. Li, A. Majumdar, and P. Yang, Nano Letters 5, 1633 (2005).CrossRefGoogle Scholar
  9. D. Fologea, M. Gershow, B. Ledden, D.S. McNabb, J.A. Golovchenko, and J. Li, Nano Letters 5, 1905, (2005a).CrossRefGoogle Scholar
  10. D. Fologea, J. Uplinger, B. Thomas, D.S. McNabb, J. Li, Nano Letters 5, 1734 (2005b).CrossRefGoogle Scholar
  11. J.B. Heng, C. Ho, T. Kim, R. Timp, A. Aksimentiev, Y.V. Grinkova, S. Sligar, K. Schulten, and G. Timp, Biophysics Journal 87, 2905 (2004).CrossRefGoogle Scholar
  12. J.B. Heng, A. Aksimentiev, C. Ho, P. Marks, Y.V. Grinkova, S. Sligar, K. Schulten, and G. Timp, Nano Letters 5, 1883 (2005).CrossRefGoogle Scholar
  13. Y. Lansac, P.K. Maiti, and M.A. Glaser, Polymer 45, 3099 (2004).CrossRefGoogle Scholar
  14. J. Li, D. Stein, C. McMullan, D. Branton, M.J. Aziz, and J.A. Golovchenko, Nature 412, 166 (2001).CrossRefGoogle Scholar
  15. J. Li., M. Gershow, D. Stein, E. Brandin, and J.A. Golovchenko, Nature Materials 2, 611 (2003).CrossRefGoogle Scholar
  16. M. Mandel, Molecular Physics 4, 489 (1961).CrossRefGoogle Scholar
  17. G.S. Manning, Quarterly Reviews of Biophysics 11, 179 (1978).CrossRefGoogle Scholar
  18. G.S. Manning, Journal of Chemical Physics 99, 477 (1993).CrossRefGoogle Scholar
  19. R.R. Netz, Journal of Physical Chemistry B. 107, 8208 (2003).CrossRefGoogle Scholar
  20. B. O’;Shaughnessy, and Q. Yang, Physical Review Letters 94, 048302 (2005).CrossRefGoogle Scholar
  21. F. Oosawa, Polyelectrolytes, Marcel Dekker, New York (1971).Google Scholar
  22. D. Porschke, Biophysical Chemistry 22, 236 (1985).CrossRefGoogle Scholar
  23. R. Raiteri, B. Margesin, and M. Grattatola, Sensors and Actuators, B. 46, 126 (1998).CrossRefGoogle Scholar
  24. R.M.M. Smeets, U. Keyser, D. Krapf, M. Wu, N.H. Dekker, and C. Dekker, Nano Letters 6, 89 (2006).CrossRefGoogle Scholar
  25. A.J. Storm, J.H. Chen, X.S. Ling, H.W. Zandbergen, and C. Dekker, Nature Materials 2, 537 (2003).CrossRefGoogle Scholar
  26. A.J. Storm, J.H. Chen, H.W. Zandbergen, and C. Dekker, Physical Review E 71, 051903 (2005a).CrossRefGoogle Scholar
  27. A.J. Storm, J.H. Chen, H.W. Zandbergen, J-F. Joanny, and C. Dekker, Nano Letters 5, 1193 (2005b).CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Hung Chang
    • 1
  • Bala Murali Venkatesan
    • 1
  • Samir M. Iqbal
    • 1
  • G. Andreadakis
    • 2
  • F. Kosari
    • 2
  • G. Vasmatzis
    • 2
  • Dimitrios Peroulis
    • 1
  • Rashid Bashir
    • 3
  1. 1.Birck Nanotechnology Center, School of Electrical and Computer EngineeringPurdue UniversityWest LafayetteUSA
  2. 2.Department of Laboratory Medicine and Pathology, Division of Experimental PathologyMayo ClinicRochesterUSA
  3. 3.Birck Nanotechnology Center, School of Electrical and Computer Engineering, Weldon School of Biomedical Engineering, School of Mechanical EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations