Advertisement

Biomedical Microdevices

, Volume 8, Issue 4, pp 361–374 | Cite as

Microplate cell-retaining methodology for high-content analysis of individual non-adherent unanchored cells in a population

  • Assaf Deutsch
  • Naomi Zurgil
  • Ihar Hurevich
  • Yana Shafran
  • Elena Afrimzon
  • Pnina Lebovich
  • Mordechai DeutschEmail author
Article

Abstract

A high throughput Microtiter plate Cell Retainer (MCR) has been developed to enable, for the first time, high-content, time-dependent analysis of the same single non-adherent and non-anchored cells in a large cell population, while bio-manipulating the cells. The identity of each cell in the investigated population is secured, even during bio-manipulation, by cell retention in a specially designed concave microlens, acting as a picoliter well (PW). The MCR technique combines micro-optical features and microtiter plate methodology. The array of PWs serves as the bottom of a microtiter plate, fitted with a unique flow damper element. The latter enables rapid fluid exchange without dislodging the cells from their original PWs, thus maintaining the cells' identity. Loading cell suspensions and reagents into the MCR is performed by simple pouring, followed by gravitational sedimentation and settling of cells into the PWs. Cell viability and cell division within the MCR were shown to be similar to those obtained under similar conditions in a standard microtiter plate. The efficiency of single cell occupancy in the MCR exceeded 90%. No cell dislodging was observed when comparing images before and after bio-manipulations (rinsing, staining, etc.). The MCR permits the performance of kinetic measurements on an individual cell basis. Data acquisition is governed by software, controlling microscope performance, stage position and image acquisition and analysis. The PW's unique micro-optical features enable rapid, simultaneous signal analysis of each individual cell, bypassing lengthy image analysis.

Keywords

Microtiter plate Cell Retainer (MCR) Individual non-adherent non-anchored cells Correlative high-content functional kinetic and post-fixation analysis Individual cell transmitted light and fluorescence detection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

Supplementary video object (5,867 KB)

References

  1. I. Biran and D.R. Walt, Analytical Chemistry 74, 3046 (2002).CrossRefGoogle Scholar
  2. C.D.T. Bratten, P.H. Cobbold, and J.M. Cooper, Analytical Chemistry 69, 253 (1997).CrossRefGoogle Scholar
  3. D.M. Cannon, N. Winograd, and A.G. Ewing, Annual Review of Biophysics and Biomolecular Structure 29, 239 (2000).CrossRefGoogle Scholar
  4. S.J. Chen and S.J. Lillard, Analitical Chemistry 73, 111 (2001).CrossRefGoogle Scholar
  5. V.I. Chin, P. Taupin, S. Sanga, J. Scheel, F.H. Gage, and S.N. Bhatia, Biotechnology and Bioengineering 88, 399 (2004).CrossRefGoogle Scholar
  6. R. Clerval, M. Kühner, Z. Li, W. Minas, A. Fjällman, B. Witholt, and W.A. Duetz, Bioworld 6, 24 (2000).Google Scholar
  7. A. Colman-Lerner, A. Gordon, E. Serra, T. Chin, O. Resnekov, D. Endy, C.G. Pesce, and R. Brent, Nature 437, 699 (2005).CrossRefGoogle Scholar
  8. S.A. Connon and S.J. Giovannoni, Applied and Environmental Microbiology 68, 3878 (2002).CrossRefGoogle Scholar
  9. M. Deutsch and A. Weinreb, Cytometry 16, 214 (1994).CrossRefGoogle Scholar
  10. S.D. Doig, S.C.R. Pickering, G. Lye, and J.M. Woodley, Biotechnology and Bioengineering 80, 42 (2002).CrossRefGoogle Scholar
  11. W.D. Donachie and K.J. Begg, Nature 227, 1220 (1970).CrossRefGoogle Scholar
  12. W.A. Duetz, W. Minas, M. Kühner, R. Clerval, Z. Li, A.H.M. Fjällman, and B. Witholt, Bioworld 2, 8 (2001).Google Scholar
  13. J. Gao, X.F. Yin, and Z.L. Fang, Lab on a Chip 4, 47 (2004).zbMATHCrossRefGoogle Scholar
  14. R.A. Flynn, A.L. Birkbeck, M. Gross, M. Ozkan, B. Shao, M.M. Wang, and S.C. Esener, Sensors and Actuators B Chemical 87, 239 (2002).CrossRefGoogle Scholar
  15. A. Gagro, S. Rabatic, I. Ivancic, K. Bendelja, J. Jelacic, A. Sabioncello, J. Misulic, D. Buneta, and D. Dekaris, Periodicum Biologorum 101, 17 (1999).Google Scholar
  16. Y. Huang and B. Rubinsky, Biomedical Microdevices 3, 145 (2000).zbMATHGoogle Scholar
  17. I. Inoue, Y. Wakamoto, H. Moriguchi, K. Okanob, and K. Yasuda, Lab on a Chip 1, 50 (2001).CrossRefGoogle Scholar
  18. G.T. John, I. Klimant, C. Wittmann, and E. Heinzle, Biotechnology and Bioengineering 81, 829 (2003a).CrossRefGoogle Scholar
  19. G. John, D. Goelling, I. Klimant, H. Schneider, and E. Heinzle, Journal of Dairy Research 70, 327 (2003b)CrossRefGoogle Scholar
  20. S. Kumar, C. Wittmann, and E. Heinzle, Biotechnology Letters 26, 1 (2004).CrossRefGoogle Scholar
  21. P.C.H. Li, L. de Camprieu, J. Caia, and M. Sangarb, Lab on a Chip 4, 174 (2004).CrossRefGoogle Scholar
  22. A. Lueking, M. Horn, H. Eickhoff, K. Buessow, H. Lehrach, and G. Walter, Analytical Biochemistry 270, 103 (1999).CrossRefGoogle Scholar
  23. T.R. Malek, T.J. Fleming, and E.K.Codias, Seminars in Immunology 6, 105 (1994).CrossRefGoogle Scholar
  24. A. Malek and M.G. Khaledi, Analytical Biochemistry 268, 262 (1999).CrossRefGoogle Scholar
  25. F. Manca, Annali Dell Istituto Superiore Di Sanita 27, 15 (1991).Google Scholar
  26. R. Manns, MipTec-ICAR (1999). http://www.microplate.org/history/det_hist.htm
  27. W. Minas, J.E. Bailey, and W.A. Antonie, van Leeuwenhoek 78, 297 (2000).CrossRefGoogle Scholar
  28. K.C. Neuman, E.H. Chadd, G.F. Liou, K. Bergman, and S.M. Block, Biophysical Journal 77, 2856 (1999).Google Scholar
  29. E. Ostuni, C.S. Chen, D.E. Ingber, and G.M. Whitesides, Langmuir, 17, 2828 (2001).Google Scholar
  30. M. Ozkan, T .Pisanic, J. Scheel, C. Barlow, S. Esener, and S.N. Bhatia, Langmuir 19, 1532 (2003).CrossRefGoogle Scholar
  31. D.R. Plymale, J.R. Haskins, and F.A. de la Iglesia, Nature Medicine 5, 351 (1999).CrossRefGoogle Scholar
  32. W.J. Qian, C.A. Aspinwall, M.A. Battiste, and R.T. Kennedy, Analytical Chemistry 72, 711 (2000).CrossRefGoogle Scholar
  33. C. Sangdun, R.A. Creelman, J.E. Mullet, and R.A. Wing, Weeds World 2, 17 (1995).Google Scholar
  34. S. Santesson, M. Andersson, E. Degerman, T. Johansson, J. Nilsson, and S. Nilsson, Analytical Chemistry 72, 3412 (2000).CrossRefGoogle Scholar
  35. K.C. Schuster, I. Reese, E. Urlaub, J. R. Gapes, and B. Lendl, Analytical Chemistry 72, 5529 (2000).CrossRefGoogle Scholar
  36. J.A. Shapiro and C. Hsu, Journal of Bacteriology 171, 5963 (1989).Google Scholar
  37. H.M. Shapiro, Journal of Microbiological Methods 42, 3 (2000).CrossRefGoogle Scholar
  38. D.T. Stitt, M.S. Nagar, T.A. Haq, and M.R. Timmins, Biotechniques 32, 684 (2002).Google Scholar
  39. J. Tan, H. Shen, and W.M. Saltzman, Biophysical Journal 81, 2569 (2001).CrossRefGoogle Scholar
  40. D.L. Taylor, E.S. Woo, and K.A. Giuliano, Current Opinions in Biotechnology 12, 75 (2001).CrossRefGoogle Scholar
  41. G.E. Tsotsou, A.E.G. Cass, and G. Gianfranco, Biosensors and Bioelectronics 17, 119 (2002).CrossRefGoogle Scholar
  42. S. Weiss, G.T. John, I. Klimant, and E. Heinzle, Biotechnology Progress 18, 821 (2002).CrossRefGoogle Scholar
  43. G. Wennemuth, S. Eisoldt, H.P. Bode, H. Renneberg, P.J. Schiemann, and G. Aumuller, Andrologia 30, 141 (1998).CrossRefGoogle Scholar
  44. J. Voldman, M.L. Gray, M. Toner, and M.A. Schmidt, Analytical Chemistry 74, 3984 (2002).CrossRefGoogle Scholar
  45. E. S. Yeung, Analytical Chemistry 71, 522A (1999).CrossRefGoogle Scholar
  46. T. Zell, W.J. Kivens, S.A. Kellermann, and Y. Shimizu, Immunological Research 20, 127 (1999).Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Assaf Deutsch
    • 1
  • Naomi Zurgil
    • 1
  • Ihar Hurevich
    • 1
  • Yana Shafran
    • 1
  • Elena Afrimzon
    • 1
  • Pnina Lebovich
    • 1
  • Mordechai Deutsch
    • 1
    Email author
  1. 1.The Biophysical Interdisciplinary Jerome Schottenstein Center for the Research and the Technology of the Cellome, Department of PhysicsBar-Ilan UniversityRamat GanIsrael

Personalised recommendations