Biomedical Microdevices

, Volume 9, Issue 3, pp 371–383

Design criteria of neuron/electrode interface. The focused ion beam technology as an analytical method to investigate the effect of electrode surface morphology on neurocompatibility

  • Vittoria Raffa
  • Virginia Pensabene
  • Arianna Menciassi
  • Paolo Dario
Article

Abstract

“Neurocompatibility” is a broad definition which comprises aspects of biocompatibility, chemical and physical surface properties, and biostability of an artificial substrate interfaced with a neural tissue.

The main issue coming from the analysis of the state of art of neuroprosthesis and neuron/electrode interfaces is the strong influence of electrode surface morphology on neurocompatibility. Enhanced functions of neurons have been observed on nano-structured materials.

This paper proposes the use of focused ion beam (FIB) technology as high precision machining technique to modify the surface morphology of an interface material. By controlling the ion milling in three dimensions, the fabrication of a surface with any predefined morphology becomes possible with nanometric precision.

In vitro tests on PC12 cells cultured on surfaces with different morphologies show that the surface morphology influences the cell adhesion. Experimental results suggest an enhancement of the interaction between cells and artificial surfaces at a specific scale (tens of nanometres) which is the typical scale of cellular interaction in the extra-cellular matrix (ECM) of living organisms.

Keywords

Cell/electrode interface Focused ion beam Surface morphology modification Neurocompatibility 

References

  1. W.F. Agnew and D.B. McCreery, Neural Prostheses (Prentice Hall, Englewood Cliffs, NJ, 1990).Google Scholar
  2. J.D. Andrade and V. Hlady, Ann. N.Y. Acad. Sci. 516, 158–172 (1987).CrossRefGoogle Scholar
  3. T.L. Babb and W. Kupfer, Exp. Neurol. 86, 171–184 (1984).CrossRefGoogle Scholar
  4. J.H. Boss, I. Shajrawi, J. Aunullah, and D. Mendes, Isr. J. Med. Sci. 31, 203–209 (1995).Google Scholar
  5. J.C. Chang, G.J. Brewer, and B.C. Wheeler, Biomed. Microdev. 245–253 (2000).Google Scholar
  6. H.G. Craighead, C.D. James, and S.W. Turner, Curr. Opin. Solid. State. Mater. Sci. 5, 177–184 (2001).CrossRefGoogle Scholar
  7. H.G. Craighead, S.W. Turner, R.C. Davis, C. James, A.M. Perez, P.M. St. John, M.S. Isaacson, L. Kam, W. Shain, J.N. Turner, and G. Banker, Biomed. Microdev. 49–64 (Sept. 1998).Google Scholar
  8. P. Dahl, Introduction to Electron and Ion Optics (Academic Press, New York, 1973).Google Scholar
  9. P. Dario, P. Garzella, M. Toro, S. Micera, M. Alavi, J. Uwe Meyer, E. Valderrama, L. Sebastiani, B. Ghelarducci, and P. Pastacaldi, J. Micromech. Microeng. 7(3), 233–236 (Sept. 1997).Google Scholar
  10. T.A. Desai, J. Deutsch, D. Motlagh, W. Tan, and B. Russell, Biomed. Microdev. 2(2), 123–129 (1999).CrossRefGoogle Scholar
  11. M. Dekker, Biological Performance of Materials. Fundamentals of Biocompatibility. Second Edition (Inc., New York, 1992).Google Scholar
  12. T.A. Desai, W.H. Chu, J.K. Tu, G.M. Beattie, A. Hayek, and M. Ferrari, Biotechnol. Bioeng. 57, 118–120 (1998).CrossRefGoogle Scholar
  13. P.D. Drumheller, D.L. Elbert, and J.A. Hubbel, Biotech. Bioeng. 43, 772–780 (1994).CrossRefGoogle Scholar
  14. Y.W. Fan, F.Z. Cui, S.P. Hou, O.Y. Xu, L.N. Chen, and I.S. Lee, J. Neurosci. Meth. 120, 17–23 (2002).Google Scholar
  15. A. Gandhi and J. Orloff, J. Vac. Sci. Technol. B 8, 1814 (1990).CrossRefGoogle Scholar
  16. L.A. Geddes and R. Roeder, Ann. Biomed. Eng. 31, 879–890 (2003).CrossRefGoogle Scholar
  17. L.A. Geddes, Electrodes and Measurement of Bioelectric Events (Wiley-Interscience, New York, 1972).Google Scholar
  18. L.A. Geddes, Medical Device Accidents (CRC Press, Boca raton, FL, 1998).Google Scholar
  19. J. Gierak, D. Mailly, G. Faini, J.L. Pelouard, P. Denk, F. Pardo, J.Y. Marzin, A. Septier, G. Schmid, J. Ferre, R. Hydman, C. Chappert, J. Flicstein, and B. Gayral, Microelect. Eng. 57–58, 865–875 (2001).CrossRefGoogle Scholar
  20. L.A. Greene, S.E. Farinelli, M.E. Cunningham, and D.S. Park, Culture and experimental use of the PC12 rat pheochromocytoma cell line. In: F. Banker, K. Goslin, In Culturing Nerve Cells 2 (MIT Press, Cambridge, MA, 1998) pp. 161–187.Google Scholar
  21. L.A. Greene and A.S. Tischler, Proc. Natl. Acad. Sci. 73(7), 2424–2428 (July 1976),CrossRefGoogle Scholar
  22. A.J. Gregoritsch, Polyimide Passivation Reability Study (IBM Corporation, Rel. Physics, 14th Annual Proceeding, 1976).Google Scholar
  23. C.T. Hanks, J.C. Wataha, and Z. Dent. Mater. 12, 186–193 (1996).Google Scholar
  24. W. He, K.E. Gonsalves, N. Batina, D.B. Poker, E. Alexander, and M. Hudson, Biomed. Microdev. 5(2), 101–108 (2003).CrossRefGoogle Scholar
  25. L.L. Hench and E.C. Ethridge, Biomaterials: An Interfacial Approach (Academic Press, New York, 1982).Google Scholar
  26. D.H. Hubel, Science 125, 549–550 (1950).CrossRefGoogle Scholar
  27. D.J. Hulmes, T.J. Wess, D.J. Prockop, and P. Fratzl, Biophys. J. 68, 1661–1670 (1995).CrossRefGoogle Scholar
  28. D. Irimia and J.O.M. Karlsson, Biomed. Microdev. 5(3), 185–194 (2003).CrossRefGoogle Scholar
  29. S. Kalbitzer, Ch. Wilbertz, Th. Miller, and A. Knoblauch, NIMPR, B 113, 154–160 (1996).CrossRefGoogle Scholar
  30. R.M. Langford, G. Dale, P.J. Hopkins1, P.J.S. Ewen, and A.K. Petford-Long, J. Micromech. Microeng. 12, 111–114 (2002).CrossRefGoogle Scholar
  31. K–K. Lee, J. He, A. Singh, S. Massia, G. Ehteshami, B. Kim, and G. Raupp, J. Micromech. Microeng 14(1), 32–37 (January 2004).CrossRefGoogle Scholar
  32. G.E. Loeb, R.A. Peck, and J. Martynink, J. Neurosci. Meth. 63, 175 (1995).Google Scholar
  33. M.P. Mattson, R.C. Haddon, and A.M. Rao, J. Mol. Neurosci. 14, 175–182 (2000).CrossRefGoogle Scholar
  34. J.L. McKenzie, M.C. Waid, R. Shi, and T.J. Webster, Biomaterials 25, 1309–1317 (2004).CrossRefGoogle Scholar
  35. K.A. Moxon and M.A.L. Nicolelis, Methods for Neural Ensemble Recordings (CRC Press, Ed. Bocadr Raton, FL, 1999).Google Scholar
  36. K.A. Moxon, N.M. Kalkhoran, M. Markert, M.A. Sambito, J.L. McKenzie, and J. Thomas Webster, IEEE Trans. Biomed. Eng. 51(6) (June 2004).Google Scholar
  37. P. Norlin, M. Kindlundh, A. Mouroux, K. Yoshida, and U.G. Hofmann, J. Micromech. Microeng. 12(4), 414–419 (July 2002).Google Scholar
  38. S.-J. Paik, Y. Park, and D. Cho, J. Micromech. Microeng. 13(3), 373–379 (May 2003).CrossRefGoogle Scholar
  39. M.W. Phaneuf, Micron 30, 277 (1999).CrossRefGoogle Scholar
  40. S.K. Quah, K.L. Danowski, and P. Pantano, Biomed. Microdev. 4(2), 123–130 (2002).CrossRefGoogle Scholar
  41. V. Raffa, P. Castrataro, A. Menciassi, and P. Dario, Focused Ion Beam as a Scanning Probe: Methods and Applications in Applied Scanning Probe Methods vol. II (Springer-Verlag, Heidelberg, 2006).Google Scholar
  42. R. Raivich, M. Bohatschek, C.U.A. Kloss, A. Werner, L.L. Jones, and G.W. Kreutzberg, Mol. Mechanisms Physiolo. Funct. 30(77) (1999).Google Scholar
  43. S. Reyntjens and R. Puers, J. Micromech. Microeng. 10, 181–188 (2000).CrossRefGoogle Scholar
  44. S. Reyntjens and R. Puers, J. Micromech. Microeng. 11(4), 287–300 (July 2001).Google Scholar
  45. E. Ruoslahti and M.D. Piersbacher, Science 238, 491–497 (1987).CrossRefGoogle Scholar
  46. T.W. Schneider, H.M. Schessler, K.M. Shaffer, J.M. Dumm, and L.A. Yonce, Biomed. Microdevices 3(4), 315–322 (2001).CrossRefGoogle Scholar
  47. J.M. Seeger and N. Klingman, J. Vasc. Surg. 8, 476–482 (1988).CrossRefGoogle Scholar
  48. S.D. Senturia, Polyimide Symposium (San Jose, California, Sept. 1986).Google Scholar
  49. G.A. Silva, Surg. Neurol. 63, 301–306 (2005).CrossRefGoogle Scholar
  50. N.B. Standen, P.T.A. Gray, and M.J. Whittaker, Microelectrode Techniques, The Plymouth Workshop Handbook (Company of Biologists, Cambridge, 1987).Google Scholar
  51. T. Stieglitz, H. Beutel, M. Schuettler, and J.-Uwe Meyer, Biomedical Microdevices 2(4), 283–294 (2000).CrossRefGoogle Scholar
  52. A.A. Tseng, I. A. Insua, J.-S. Park, and C.D. Chen, J. Micromech. Microeng. 15, 20–28 (2005).CrossRefGoogle Scholar
  53. A.A. Tseng, J. Micromech. Microeng. 14(4) (April 2004).Google Scholar
  54. J. Uwe Meyer and M. Biehl, J. Micromech. Microeng. 5(2), 172–174 (June 1995).CrossRefGoogle Scholar
  55. A. Welle and E. Gottwald, Biomed. Microdev. 4(1), 33–41 (2002).CrossRefGoogle Scholar
  56. D.F. William, Biocompatibility of Clinical Implanted Materials. vol I. Metals and Ceramics (CRC Press, Inc., Boca Raton, 1981).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Vittoria Raffa
    • 1
  • Virginia Pensabene
    • 1
    • 2
  • Arianna Menciassi
    • 1
  • Paolo Dario
    • 1
  1. 1.CRIM–Research Center in MicroengineeringScuola Superiore Sant’AnnaPontedera (PI)Italy
  2. 2.University of GenovaItalian Institute of TechnologiesGenovaItaly

Personalised recommendations