Biomedical Microdevices

, Volume 9, Issue 6, pp 911–922 | Cite as

Design and fabrication of an artificial cornea based on a photolithographically patterned hydrogel construct

  • David Myung
  • Wongun Koh
  • Amit Bakri
  • Fan Zhang
  • Amanda Marshall
  • Jungmin Ko
  • Jaan Noolandi
  • Michael Carrasco
  • Jennifer R. Cochran
  • Curtis W. Frank
  • Christopher N. Ta
Article

Abstract

We describe the design and fabrication of an artificial cornea based on a photolithographically patterned hydrogel construct, and demonstrate the adhesion of corneal epithelial and fibroblast cells to its central and peripheral components, respectively. The design consists of a central “core” optical component and a peripheral tissue-integrable “skirt.” The core is composed of a poly(ethylene glycol)/poly(acrylic acid) (PEG/PAA) double-network with high strength, high water content, and collagen type I tethered to its surface. Interpenetrating the periphery of the core is a microperforated, but resilient poly(hydroxyethyl acrylate) (PHEA) hydrogel skirt that is also surface-modified with collagen type I. The well-defined microperforations in the peripheral component were created by photolithography using a mask with radially arranged chrome discs. Surface modification of both the core and skirt elements was accomplished through the use of a photoreactive, heterobifunctional crosslinker. Primary corneal epithelial cells were cultured onto modified and unmodified PEG/PAA hydrogels to evaluate whether the central optic material could support epithelialization. Primary corneal fibroblasts were seeded onto the PHEA hydrogels to evaluate whether the peripheral skirt material could support the adhesion of corneal stromal cells. Cell growth in both cases was shown to be contingent on the covalent tethering of collagen. Successful demonstration of cell growth on the two engineered components was followed by fabrication of core-skirt constructs in which the central optic and peripheral skirt were synthesized in sequence and joined by an interpenetrating diffusion zone.

Keywords

Artificial cornea Keratoprosthesis Photolithography Tissue integration Epithelialization Double-network Interpenetrating network Hydrogel 

Notes

Acknowledgments

This research was supported by the Bio-X Program and the Office of Technology Licensing at Stanford University. Instrument support was provided by the shared facilities at the Center on Polymer Interfaces and Macromolecular Assemblies (CPIMA) at Stanford University. The authors thank Stacey Bent and Jungsic Hong for use of the X-ray spectrometer and Beinn Muir for use of his high-resolution digital camera. Additional external support was also received from VISX, Incorporated (now VISX Technology) and the Fight for Sight Foundation.

References

  1. D.R. Albrecht, V.L. Tsang, R.L. Sah, and S.N. Bhatia, Lab Chip 5, 111–118 (2005).CrossRefGoogle Scholar
  2. J.V. Aquavella, G.N. Rao, A.C. Brown, and J.K. Harris, Ophthalmology 89, 655–660 (1982).Google Scholar
  3. L. Aucoin, C.M. Griffith, G. Pleizier, Y. Deslandes, and H. Sheardown, J. Biomater. Sci. Polym. Ed. 13, 447–462 (2002).CrossRefGoogle Scholar
  4. A. Bakri, N. Farooqui, D. Myung, W.G. Koh, J. Noolandi, M. Carrasco, C. Frank, and C.N. Ta, Invest. Ophthalmol. Vis. Sci. 47:(E-Abstract 3592), (2006).Google Scholar
  5. J.C. Barber, Int. Ophthalmol. Clin. 28, 103–109 (1988).CrossRefGoogle Scholar
  6. H. Cardona, Refract. Corneal. Surg. 7, 468–471 (1991).Google Scholar
  7. D.J. Carlsson, F. Li, S. Shimmura, and M. Griffith, Curr. Opin. Ophthalmol. 14, 192–197 (2003).CrossRefGoogle Scholar
  8. T.V. Chirila, Biomaterials 22, 3311–3317 (2001).CrossRefGoogle Scholar
  9. G.M. Cruise, D.S. Scharp, and J.A. Hubbell, Biomaterials 19, 1287–1294 (1998).CrossRefGoogle Scholar
  10. C. Czeslik, G. Jackler, T. Hazlett, E. Gratton, R. Steitz, A. Wittemann, and M. Ballauff, Physical Chemistry Chemical Physics 6, 5557–5563 (2004).CrossRefGoogle Scholar
  11. M.G. Doane, C.H. Dohlman, and G. Bearse, Cornea 15, 179–184 (1996).CrossRefGoogle Scholar
  12. C. Gao, X. Hu, Y. Hong, J. Guan, and J. Shen, J. Biomater. Sci., Polym. Ed. 14, 937–950 (2003).CrossRefGoogle Scholar
  13. J.P. Gong, Y. Katsuyama, T. Kurokawa, and Y. Osada, Adv. Mater. 15, 1155–1158 (2003).CrossRefGoogle Scholar
  14. M. Griffith,M.A. Watsky, C.Y. Liu, and V.T. Randall, In: A. Atala and R.P. Lanza (Eds.),Epithelial Cell Culture: Cornea, in Methods of Tissue Engineering (Academic Press, San Francisco, 2002) pp. 131–140.Google Scholar
  15. J. Guan, C. Gao, F. Linxian, and J. Sheng, J. Biomater. Sci., Polym. Ed. 11, 523–536 (2000).CrossRefGoogle Scholar
  16. A. Halperin, Langmuir 15, 2525–2533 (1999).CrossRefGoogle Scholar
  17. C.R. Hicks, T.V. Chirila, P.D. Dalton, A.B. Clayton, S. Vijayasekaran, G.J. Crawford, and I.J. Constable, Aust. N Z J Ophthalmol. 24, 297–303 (1996).Google Scholar
  18. C.R. Hicks, G.J. Crawford, D.T. Tan, G.R. Snibson, G.L. Sutton, N. Downie, T.D. Gondhowiardjo, D.S. Lam, L. Werner, D. Apple, and I.J. Constable, Cornea 22, 583–590 (2003).CrossRefGoogle Scholar
  19. C.R. Hicks, J.H. Fitton, T.V. Chirila, G.J. Crawford, and I.J. Constable, Surv. Ophthalmol. 42, 175–189 (1997a).CrossRefGoogle Scholar
  20. C.R. Hicks, X. Lou, S. Platten, A.B. Clayton, S. Vijayasekaran, H.J. Fitton, T.V. Chirila, G.J. Crawford, and I.J. Constable, Aust. N Z J Ophthalmol. 25(Suppl 1), S50–2 (1997b).Google Scholar
  21. C.R. Hicks, S. Vijayasekaran, T.V. Chirila, S.T. Platten, G.J. Crawford, and I.J. Constable, Cornea 17, 301–308 (1998).CrossRefGoogle Scholar
  22. K. Hille, H. Landau, and K.W. Ruprecht, Ophthalmologe 99, 90–95 (2002).CrossRefGoogle Scholar
  23. D.A. Hoeltzel, D. Altman, K. Buzard, and K. Choe, J. Biomechan. Engin. 114, 202–215 (1992).Google Scholar
  24. M.M. Ismail, J. Cataract Refract. Surg. 28, 527–530 (2002).CrossRefGoogle Scholar
  25. B. Khan, E.J. Dudenhoefer, and C.H. Dohlman, Curr. Opin. Ophthalmol. 12, 282–287 (2001).CrossRefGoogle Scholar
  26. F. Li, D. Carlsson, C. Lohmann, E. Suuronen, S. Vascotto, K. Kobuch, H. Sheardown, R. Munger, M. Nakamura, and M. Griffith, Proc. Natl. Acad. Sci. USA 100, 15346–15351 (2003).CrossRefGoogle Scholar
  27. V.A. Liu and S.N. Bhatia, Biomed. Microdev. 4, 257–266 (2002).CrossRefGoogle Scholar
  28. X. Lou and V. Coppenhagen., Polym. Intern. 50, 319–325 (2001).CrossRefGoogle Scholar
  29. T. Matsuda, K. Inoue, and T. Sugawara, ASAIO Transactions 36, M559–M562 (1990).Google Scholar
  30. T. Matsuda and T. Sugawara, Langmuir 11, 2272–2276 (1995).CrossRefGoogle Scholar
  31. V. Moser, D.C. Anthony, W.F. Sette, and R.C. MacPhail, Fund. Appl. Toxicol. 18, 343–352 (1992).CrossRefGoogle Scholar
  32. D. Myung, W. Koh, J. Ko, J. Noolandi, M. Carrasco, A. Smith, C. Frank, and C. Ta, Invest. Ophthalmol. Vis. Sci. 46: E-Abstract 5003, (2005).Google Scholar
  33. Y. Nakayama and T. Matsuda, Langmuir 15, 5560–5566 (1999).CrossRefGoogle Scholar
  34. I.S. Nash, P.R. Greene, and C.S. Foster, Exp. Eye. Res. 35, 413–424 (1982).CrossRefGoogle Scholar
  35. K.T. Nguyen and J.L. West, Biomaterials 23, 4307–4314 (2002).CrossRefGoogle Scholar
  36. M. Nouri, H. Terada, E.C. Alfonso, C.S. Foster, M.L. Durand, and C.H. Dohlman, Arch. Ophthalmol. 119, 484–489 (2001).Google Scholar
  37. O. Olabisi, L.M. Robeson, and M.T. Shaw, Polymer-Polymer Miscibility (Academic Press, New York, 1979).Google Scholar
  38. N.C. Padmavathi and P.R. Chatterji, Macromolecules 29, 1976–1979 (1996).CrossRefGoogle Scholar
  39. S. Pintucci, F. Pintucci, S. Caiazza, and M. Cecconi, Eur. J. Ophthalmol. 6, 125–130 (1996).Google Scholar
  40. C.P. Quinn, C.P. Pathak, A. Heller, and J.A. Hubbell, Biomaterials 16, 389–396 (1995).CrossRefGoogle Scholar
  41. H. Saito, A. Sakurai, M. Sakakibara, and H. Saga, J. Appl. Polym. Sci. 90, 3020–3025 (2003).CrossRefGoogle Scholar
  42. B. Strampelli, Ber. Zusammenkunft. Dtsch. Ophthalmol. Ges. 71, 322–335 (1972).Google Scholar
  43. D.F. Sweeney, R.Z. Xie, M.D. Evans, A. Vannas, S.D. Tout, H.J. Griesser, G. Johnson, and J.G. Steele, Invest. Ophthalmol. Vis. Sci. 44, 3301–3309 (2003).CrossRefGoogle Scholar
  44. V. Trinkaus-Randall, J. Capecchi, L. Sammon, D. Gibbons, H.M. Leibowitz, and C. Franzblau, Invest. Ophthalmol. Vis. Sci. 31, 1321–1326 (1990a).Google Scholar
  45. V. Trinkaus-Randall, A.W. Newton, and C. Franzblau, Invest. Ophthalmol. Vis. Sci. 31, 440–447 (1990b).Google Scholar
  46. V.L. Tsang, and S.N. Bhatia, Adv. Drug. Deliv. Rev. 56, 1635–1647 (2004).CrossRefGoogle Scholar
  47. A.G. Tsuk, V. Trinkaus-Randall, and H.M. Leibowitz, J. Biomed. Mater. Res. 34, 299–304 (1997).CrossRefGoogle Scholar
  48. S. Vijayasekaran, T.V. Chirila, T.A. Robertson, X. Lou, J.H. Fitton, C.R. Hicks, and I.J. Constable, J. Biomater. Sci. Polym. Ed. 11, 599–615 (2000).CrossRefGoogle Scholar
  49. A. Wittemann, B. Haupt, and M. Ballauff, Phys. Chem. Chem. Phys. 5, 1671–1677 (2003).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • David Myung
    • 1
    • 2
  • Wongun Koh
    • 3
  • Amit Bakri
    • 1
  • Fan Zhang
    • 4
  • Amanda Marshall
    • 2
  • Jungmin Ko
    • 2
  • Jaan Noolandi
    • 1
    • 2
  • Michael Carrasco
    • 5
  • Jennifer R. Cochran
    • 4
  • Curtis W. Frank
    • 2
  • Christopher N. Ta
    • 1
    • 6
  1. 1.Department of OphthalmologyStanford University School of MedicineStanfordUSA
  2. 2.Department of Chemical EngineeringStanford UniversityStanfordUSA
  3. 3.Department of Chemical EngineeringYonsei UniversitySeodaemoon-kuSouth Korea
  4. 4.Department of BioengineeringStanford UniversityStanfordUSA
  5. 5.Department of ChemistrySanta Clara UniversitySanta ClaraUSA
  6. 6.Department of OphthalmologyStanford UniversityStanfordUSA

Personalised recommendations