Biomedical Microdevices

, Volume 9, Issue 3, pp 335–343 | Cite as

Electrokinetic measurements of dielectric properties of membrane for apoptotic HL-60 cells on chip-based device

  • Chengjun Huang
  • Ailiang Chen
  • Lei Wang
  • Min Guo
  • Jun Yu


The specific membrane capacitance and conductance of mammalian cells reflect the surface morphological complexities and barrier functions of cell membrane, respectively, and could potentially respond to cell physiological and pathological changes in a measurable manner. In this study, an electrokinetic system was developed by using negative dielectrophoretic force (nDEP force) assisted positioning and electroroation (ROT) measurement. Numerical simulations regarding the geometric model of the electrode were performed primarily for the electric field analysis. The dielectric responses of membrane for apoptotic HL-60 cells induced by bufalin were detected. The membrane capacitance of the cells was found to fall from an initial value of 15.6 ± 0.9 mF/cm2 to 6.4 ± 0.6 mF/cm2 after a 48 h treatment with 10 nM bufalin. However, the membrane conductance remained almost constant at (2.25 ± 1.1) × 103 S/m2 during the first 12 h of bufalin treatment and then increased distinctly to (4.2 ± 1.3) × 103 S/m2 thereafter. Scan electron microscopy (SEM) studies of the cells revealed a decreased complexity in cell membrane morphology following bufalin treatments, suggesting that the observed changes in the membrane capacitance was dominated by the alterations of cell surface structures. The results demonstrate that the ROT technique gives a quantitative analysis of the toxic damage by chemicals to cells and can be exploited in the testing and development of new pharmaceuticals and active cell agents.


Cell positioning Dielectrophoretic force Electrorotation (ROT) Apoptosis Membrane capacitance Membrane conductance Bufalin 


  1. S. Addya, M.A. Keller, K. Delgrosso, C.M. Ponte, R. Vadigepalli, G.E. Gonye, and S. Surrey, Physiological Genomics 19, 117–130 (2004).CrossRefGoogle Scholar
  2. M. Akiyama, M. Ogura, M. Iwai, M. Iijima, S. Numazawa, and T. Yoshida, Human Cell 12, 205–209 (1999).Google Scholar
  3. J. Alcouffe, S.C. Bauguil, V. Garcia, R. Salvayre, M. Thomsen, and H. Benoist, Journal of Lipid Research 40, 1200–1210 (1999).Google Scholar
  4. W.M. Arnold, U. Zimmermann, W. Heiden, and J. Ahlers, Biochimca et Biophysica Acta 942, 96–106 (1988).CrossRefGoogle Scholar
  5. W.M. Arnold and U. Zimmermann, Journal of Electrostatics 21, 151–191 (1988).CrossRefGoogle Scholar
  6. F.F. Becker, X.B. Wang, Y. Huang, R. Pethig, J. Vykoukal, and P.R. Gascoyne, Proceedings of the National Academy of Science of USA 92, 860–864 (1995).Google Scholar
  7. X.Y. Chen, W.L. Hu, R.C. Xu, L. Chen, and J. Qian, Chinese Journal of Pharmacology and Toxicology 15, 293–296 (2001).Google Scholar
  8. C. Dalton, A.D. Goater, J. Drysdale, and R. Pethig, Colloids and Surfaces A: Physicochemical and Engineering Aspects 195, 263–268 (2001).CrossRefGoogle Scholar
  9. E. Dopp, L. Jonas, B. Nebe, A. Budde, and E. Knippel, Environmental Health Perspectives 108, 153–158 (2000).CrossRefGoogle Scholar
  10. Z. Darzynkiewicz, G. Juan, X. Li, W. Gorczyca, T. Murakami, and F. Traganos, Cytometry 27, 1–20 (1997).CrossRefGoogle Scholar
  11. C. Dive and J.A. Hickman, British Journal of Cancer 64, 192–196 (1991).Google Scholar
  12. J. Gimsa, T. Muller, T. Schnelle, and G. Fuhr, Biophysical Journal 71, 495–506 (1996).Google Scholar
  13. R. Holzel and I. Lamprecht, Biochimica et Biophysica Acta 1104, 195–200 (1992).CrossRefGoogle Scholar
  14. X. Hu, W.M. Arnold, and U. Zimmermann, Biochimica et Biophysica Acta 1021, 191–200 (1990).CrossRefGoogle Scholar
  15. Y. Huang, R. Holzel, R. Pethig, and X.B. Wang, Physics in Medicine and Biology 37, 1499–1517 (1992).CrossRefGoogle Scholar
  16. Y. Huang, X.B. Wang, F.F. Becker, and P.R. Gascoyne, Biochimica et Biophysica Acta 1282, 76–84 (1996).CrossRefGoogle Scholar
  17. Y. Jing, H. Ohizumi, N. Kawazoe, S. Hashimoto, Y. Masuda, S. Nakajo, T. Yoshida, Y. Kuroiwa, and K. Nakaya, Japanese Journal of Cancer Research 85, 645–651 (1994).Google Scholar
  18. N. Kawazoe, T. Aiuchi, Y. Masuda, S. Nakajo, and K. Nakaya, Journal of Biochemistry 126, 278–286 (1999).Google Scholar
  19. M. Kurschner, K. Nielsen, C. Andersen, V.L. Sukhorukov, W.A. Schenk, R. Benz, and U. Zimmermann, Biophysical Journal 74, 3031–3043 (1998).Google Scholar
  20. F. Lang, A.L. Wienhues, M. Paulmich, I. Szabo, D. Siemen, and E. Gulbins, Cell Physiological Biochemistry 8, 285–292 (1998).CrossRefGoogle Scholar
  21. P.K. Lund, A.B. Westvik, G.B. Joo, R. Ovstebo, K.B. Haug, and P. Kierulf, Journal of Immunological Methods 252, 45–55 (2001).CrossRefGoogle Scholar
  22. S.J. Martin, C.P. Reutelingsperger, A.J. McGahon, J.A. Rader, R.C. van Schie, D.M. Laface, and D.R. Green, Journal of Experimental Medicine 182, 1545–1556 (1995).CrossRefGoogle Scholar
  23. Y. Masuda, N. Kawazoe, S. Nakajo, T. Yoshida, Y. Kuroiwa, and K. Nakaya, Leukemia Research 19, 549–556 (1995).CrossRefGoogle Scholar
  24. F. Micoud, B. Mandrand, and C. Malcus-Vocanson, Cell Proliferation 34, 99–113 (2001).CrossRefGoogle Scholar
  25. I.E. O’Brien, C.P. Reutelingsperger, and K.M. Holdaway, Cytometry 29, 28–33 (1997).CrossRefGoogle Scholar
  26. K. Ratanachoo, P.R. Gascoyne, and M. Ruchirawat, Biochimica et Biophysica Acta 1564, 449–458 (2002).CrossRefGoogle Scholar
  27. J. Savill, V. Fadok, P. Hension, and C. Haslett, Immunology Today 14, 131–136 (1993).CrossRefGoogle Scholar
  28. E. Shaulian and M. Karin, Nature Cell Biology 4, 131–136 (2002).CrossRefGoogle Scholar
  29. V.L. Sukhorukov and U. Zimmermann, Journal of Membrane Biology 153, 161–169 (1996).CrossRefGoogle Scholar
  30. X. Wang, F.F. Becker, and P.R. Gascoyne, Biochimica et Biophysica Acta 1564, 412–420 (2002).CrossRefGoogle Scholar
  31. X.J. Wang, X.B. Wang, and P.R. Gascoyne, Journal of Electrostatics 1997, 277–295 (1997).CrossRefGoogle Scholar
  32. X.B. Wang, Y. Huang, P.R. Gascoyne, F.F. Becker, R. Holzel, and R. Pethig, Biochimica et Biophysica Acta 119, 330–344 (1994).CrossRefGoogle Scholar
  33. M. Watabe, Y. Masuda, S. Nakajo, T. Yoshida, Y. Kuroiwa, and K. Nakaya, Journal of Biological Chemistry 271, 14067–14072 (1996).CrossRefGoogle Scholar
  34. E.S. Woodle and S. Kulkami, Transplantation 66, 681–691 (1998).CrossRefGoogle Scholar
  35. Y.F. Wu, C.J. Huang, L. Wang, X.L. Miao, W.L. Xing, and J. Cheng, Colloids and Surfaces A: Physicochemical and Engineering Aspects 262, 57–64 (2005).CrossRefGoogle Scholar
  36. A.H. Wyllie, British Journal of Cancer 7, 205–208 (1993).Google Scholar
  37. R.C. Xu, X.Y. Chen, L. Chen, and J. Qian, Zhongguo Zhong Yao Za Zhi 26, 59–61 (2001).Google Scholar
  38. J. Yang, Y. Huang, X. Wang, X.B. Wang, F.F. Becker, and P.R. Gascoyne, Biophysical Journal 76, 3307–3314 (1999).CrossRefGoogle Scholar
  39. J.Y. Yeh, W.J. Huang, S.F. Kan, and P.S. Wang, Prostate 54, 112–124 (2003).CrossRefGoogle Scholar
  40. Z. Yu, G.X. Xiang, L.B. Pan, L.H. Huang, Z.Y. Yu, W.L. Xing, and J. Cheng, Biomedical Microdevices 6, 311–324 (2004).CrossRefGoogle Scholar
  41. L. Zhang, K. Nakaya, T. Yoshida, and Y. Kuroiwa, Cancer Research 52, 4634–4641 (1992).Google Scholar
  42. U. Zimmermann and G.A. Neil, Electromanipulation of Cell (CRC Press, Boca Raton, 1996).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Chengjun Huang
    • 1
    • 4
  • Ailiang Chen
    • 2
    • 3
    • 4
  • Lei Wang
    • 2
    • 3
    • 4
  • Min Guo
    • 4
  • Jun Yu
    • 1
    • 4
  1. 1.Department of Electronic Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
  2. 2.Department of Biological Sciences and BiotechnologyTsinghua UniversityBeijingChina
  3. 3.Medical Systems Biology Research CenterTsinghua University School of MedicineBeijingChina
  4. 4.National Engineering Research Center for Beijing Biochip TechnologyBeijingChina

Personalised recommendations