Biomedical Microdevices

, Volume 9, Issue 3, pp 301–305 | Cite as

A microfluidic platform for sequential ligand labeling and cell binding analysis

  • Guodong Sui
  • Cheng-Chung Lee
  • Ken-Ichiro Kamei
  • Hua-Jung Li
  • Jin-Yi Wang
  • Jun Wang
  • Harvey R. Herschman
  • Hsian-Rong Tseng
Article

Abstract

Developing biochemical and cell biological assay for screening biomolecules, evaluating their characteristics in biological processes, and determining their pharmacological effects represents a key technology in biomedical research. A PDMS-based integrated microfluidic platform was fabricated and tested for facilitating the labeling of ligand on the nanogram scale and sequential cell binding analysis in a manner that saves both time and reagents. Within this microfluidic platform, ligand labeling, cell immobolization, and optical analysis are performed in a miniaturized, continuous and semi-automated manner. This microfluidic device for ligand labeling and cell analysis is composed of two functional modules: (i) a circular reaction loop for fluorophore-labeling of the ligand and (ii) four parallel-oriented incubation chambers for immobilization of cells, binding of ligand to different cell populations, and optical evaluation of interactions between the labeled ligand and its cell targets. Epidermal growth factor (EGF) as the ligand and different cell lines with various levels of EGF receptor expression have been utilized to test the feasiblity of this microfluidic platform. When compared to studies with traditional Petri dish handling of cells and tissues, or even microwell analyses, experiments with the microfluidic platform described here are much less time consuming, conserve reagents, and are programmable, which makes these platforms a very promising new tool for biological studies.

Keywords

Microfluidics Ligand labeling PDMS EGF EGFR 

References

  1. V.C. Abraham, D.L. Taylor, and J.R. Haskins, Trends Biotechnol. 22, 15–22 (2004).CrossRefGoogle Scholar
  2. A. Aharonov, R. Pruss, and H. Herschman, J. Cell. Biol. 75, A188 (1977).Google Scholar
  3. R.B. Bird, W.E. Stewart, and E.N. Lighttfoot, Transport Phenomena (John Wiley & Sons, 2002).Google Scholar
  4. I. Braslavsky, B. Hebert, E. Kartalov, and S.R. Quake, Proc. Nat. Acad. Sci. USA 100, 3960–3964 (2003).CrossRefGoogle Scholar
  5. B.F. El-Rayes and P.M. LoRusso, Brit. J. Cancer 91, 418–424 (2004).CrossRefGoogle Scholar
  6. A. Groisman, M. Enzelberger, and S.R. Quake, Science 300, 955–958 (2003).CrossRefGoogle Scholar
  7. C.L. Hansen, M.O.A. Sommer, and S.R. Quake, Proc. Nat. Acad. Sci. USA 101, 14431–144436 (2004).CrossRefGoogle Scholar
  8. R.S. Herbst, Int. J. Radiat. Oncol. Biol. Phys. 59, 21–26 (2004).CrossRefGoogle Scholar
  9. P.J. Hung, P.J. Lee, P. Sabounchi, N. Aghdam, R. Lin, and L.P. Lee, Biotechnol. Bioeng. 89, 1–8 (2005).CrossRefGoogle Scholar
  10. J. Khandurina and A. Guttman, Curr. Opin. Chem. Biol. 6, 359–366 (2002).CrossRefGoogle Scholar
  11. C.C. Lee, G.D. Sui, A. Elizarov, C.Y.J. Shu, Y.S. Shin, A.N. Dooley, J. Huang, A. Daridon, P. Wyatt, D. Stout, H.C. Kolb, O.N. Witte, N. Satyamurthy, J.R. Heath, M.E. Phelps, S.R. Quake, and H.R. Tseng, Science 310, 1793–1798 (2005).CrossRefGoogle Scholar
  12. J. Liu, M. Enzelberger, and S. Quake, Electrophoresis 23, 1531–1536 (2002).CrossRefGoogle Scholar
  13. J. Liu, C. Hansen, and S.R. Quake, Anal. Chem. 75, 4718–4723 (2003).CrossRefGoogle Scholar
  14. J.C. McDonald and G.M. Whitesides, Acc. Chem. Res. 35, 491–499 (2002).CrossRefGoogle Scholar
  15. T.C. Merkel, V.I. Bondar, K. Nagai, B.D. Freeman, and I. Pinnau, J. Polym. Sci. B-Polym. Phys. 38, 415–434 (2000).CrossRefGoogle Scholar
  16. P. Nair, Curr. Sci. 88, 890–898 (2005).Google Scholar
  17. R.M. Pruss and H.R. Herschman, Proc. Nat. Acad. Sci. USA 74, 3918–3921 (1977).CrossRefGoogle Scholar
  18. M.O. Reese, R.M. van Dam, A. Scherer, and S.R. Quake, Genome Res. 13, 2348–2352 (2003).CrossRefGoogle Scholar
  19. T. Thorsen, S.J. Maerkl, and S.R. Quake, Science 298, 580–584 (2002).Google Scholar
  20. M.A. Unger, H.P. Chou, T. Thorsen, A. Scherer, and S.R. Quake, Science 288, 113–116 (2000).CrossRefGoogle Scholar
  21. P. Watts and S.J. Haswell, Curr. Opin. Chem. Biol. 7, 380–387 (2003).CrossRefGoogle Scholar
  22. O. Worz, K.P. Jackel, T. Richter, and A. Wolf, Chem. Eng. Sci. 56, 1029–1033 (2001).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Guodong Sui
    • 1
  • Cheng-Chung Lee
    • 2
  • Ken-Ichiro Kamei
    • 1
  • Hua-Jung Li
    • 1
  • Jin-Yi Wang
    • 1
  • Jun Wang
    • 1
  • Harvey R. Herschman
    • 1
  • Hsian-Rong Tseng
    • 1
  1. 1.Department of Molecular Medical Pharmacology and Crump Institute for Molecular ImagingUniversity of California, Los AngelesLos AngelesUSA
  2. 2.Department of BioengineeringCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations