Biomedical Microdevices

, 9:245

Design and testing of a disposable microfluidic chemiluminescent immunoassay for disease biomarkers in human serum samples

  • A. Bhattacharyya
  • C. M. Klapperich
Article

Abstract

This paper presents the development of a plastic microfluidic immunosensor for rapid, reliable and on-the-spot detection of disease biomarkers in human sera. The microfluidic chips were fabricated in cyclic polyolefin by hot-embossing with a silicon master mold. The master itself was made using photolithographic techniques and Deep Reactive Ion Etching (DRIE). As a platform model, serum concentrations of C-reactive protein (CRP), a cardiac and inflammation marker, was measured on-chip using chemiluminescence based immunoassay. The assay results were read via an on-board instant photographic film, and with an imager capable of detecting chemiluminescent signals. The on-board detection module obviates the need for any dedicated bench-top analyzer for reading the immunoassay results, and therefore makes the device self-sufficient for point-of-care diagnostics when simple positive/negative results are sought. The microfluidic chemiluminescence results were compared with standard microplate ELISA analysis to assess the accuracy of the developed microfluidic immunoassay. Screening of CRP in human serum samples showed good correlation with ELISA analysis and the mean difference between the two methods using the Bland and Altman method was −0.079 ± 0.858 mg/L for hsCRP. With approximate assay times of 25 min, the developed microfluidic immunoassay approach shows great potential for rapid plus sensitive detection of disease markers at the point-of-care.

Keywords

Microfluidic immunoassay Cyclic polyolefin Chemiluminescence Point-of-care diagnostics On-board detection 

References

  1. A. Bhattacharyya and C.M. Klapperich, Anal. Chem. 78, 788 (2006).CrossRefGoogle Scholar
  2. E.N. Brown, T.J. McDermott, K.J. Bloch, and A.D. McCollom, Clin. Chem. 42, 893 (1996).Google Scholar
  3. J.H. Cho, S.M. Han, E.H. Paek, I.H. Cho, and S.H. Paek, Anal. Chem. 78, 793 (2006).CrossRefGoogle Scholar
  4. N. Christodoulides, S. Mohanty, C.S. Miller, M.C. Langub, P.N. Floriano, P. Dharshan, M.F. Ali, Bernard, D. Romanovicz, E. Anslyn, P.C. Fox, and J.T. McDevitt, Lab Chip 5, 261 (2005).CrossRefGoogle Scholar
  5. A. Dodge, K. Fluri, E. Verpoorte, and N.F. de Rooij, Anal. Chem. 73, 3400 (2001).CrossRefGoogle Scholar
  6. Y. Dong, K.S. Phillips, and Q. Cheng, Lab Chip 6, 675 (2006).CrossRefGoogle Scholar
  7. R. Ekins, Nucl. Med. Biol. 21, 495 (1994).Google Scholar
  8. Y. Gao, G. Hu, F.Y.H. Lin, P.M. Sherman, and D. Li., in Proceedings of the 3rd International Conference on Microchannels and Minichannels, Toronto (2005).Google Scholar
  9. A. Hatch, A.E. Kamholz, K.R. Hawkins, M.S. Munson, E.A. Schilling, B.H. Weigl, and P. Yager, Nat. Biotechnol. 19, 461 (2001).CrossRefGoogle Scholar
  10. I.V. Jani, G. Janossy, D.W.G. Brown, and F. Mandy, The Lancet 2, 243 (2002).CrossRefGoogle Scholar
  11. M.A. Johns, L.K. Rosengarten, M. Jackson, and F.E. Regnier, J. Chromatogr. A 743, 195 (1996).CrossRefGoogle Scholar
  12. K. Kriz, F. Ibraimi, M. Lu, L.O. Hansson, and D. Kriz, Anal. Chem. 77, 5920 (2005).CrossRefGoogle Scholar
  13. I. Kushner and D.L. Rzewnicki, Baillieres Clin. Rheumatol. 8, 513 (1994).CrossRefGoogle Scholar
  14. F.Y.H. Lin, M. Sabri, D. Erickson, J. Alirezaie, D. Li, and P.M. Sherman, The Analyst 129(9), 823 (2004).CrossRefGoogle Scholar
  15. T.A. Pearson, G.A. Mensah, R.W. Alexander, J.L. Anderson, R.O. Cannon III, M. Criqui, Y.Y. Fadl, S.P. Fortmann, Y. Hong, G.L. Myers, N. Rifai, S.C. Smith, Jr, K. Taubert, R.P. Tracy, and F. Vinicor, Circulation 107, 499 (2003).CrossRefGoogle Scholar
  16. P.M. Ridker and D.A. Morrow, Cardiol. Clin. 21, 315 (2003).CrossRefGoogle Scholar
  17. W.L. Roberts, L. Moulton, T.C. Law, G. Farrow, M. Copper-Anderson, J. Savory, and N. Rifai, Clin. Chem. 47, 418 (2001).Google Scholar
  18. J.S. Rossier, and H.H. Girault, Lab Chip 1, 153 (2001).CrossRefGoogle Scholar
  19. S.K. Sia, V. Linder, B.A. Parviz, A. Siegel, and G.M. Whitesides, Angew. Chem. Int. Ed. 43, 498 (2004).CrossRefGoogle Scholar
  20. K. Sato, M. Tokeshi, H. Kimura, and T. Kitamori, Anal. Chem. 73, 1213 (2001).CrossRefGoogle Scholar
  21. M. Wolf, D. Juncker, B. Michel, P. Hunziker, and E. Delamarche, Biosens. Bioelectron. 19, 1193 (2004).CrossRefGoogle Scholar
  22. J. Zeravik, T. Ruzgas, and M. Franek, Biosens. Bioelectron. 18, 1321 (2003).CrossRefGoogle Scholar
  23. M. Zimmermann, E. Delamarche, M. Wolf, and P. Hunziker, Biomed. Microdevices 7(2), 99 (2005).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • A. Bhattacharyya
    • 1
  • C. M. Klapperich
    • 1
    • 2
  1. 1.Department of Biomedical EngineeringBoston UniversityBostonUSA
  2. 2.Department of Manufacturing EngineeringBoston UniversityBostonUSA

Personalised recommendations