Biomedical Microdevices

, Volume 9, Issue 1, pp 25–34 | Cite as

A microfluidic platform for 3-dimensional cell culture and cell-based assays

Article

Abstract

This paper reports a novel microfluidic platform introducing peptide hydrogel to make biocompatible microenvironment as well as realizing in situ cell-based assays. Collagen composite, OPLA and Puramatrix scaffolds are compared to select good environment for human hepatocellular carcinoma cells (HepG2) by albumin measurement. The selected biocompatible self-assembling peptide hydrogel, Puramatrix, is hydrodynamically focused in the middle of main channel of a microfluidic device, and at the same time the cells are 3-dimensionally immobilized and encapsulated without any additional surface treatment. HepG2 cells have been 3-dimensionally cultured in a poly(dimethylsiloxane) (PDMS) microfluidic device for 4 days. The cells cultured in micro peptide scaffold are compared with those cultured by conventional petri dish in morphology and the rate of albumin secretion. By injection of different reagents into either side of the peptide scaffold, the microfluidic device also forms a linear concentration gradient profile across the peptide scaffold due to molecular diffusion. Based on this characteristic, toxicity tests are performed by Triton X-100. As the higher toxicant concentration gradient forms, the wider dead zone of cells in the peptide scaffold represents. This microfluidic platform facilitates in vivo-like 3-dimensional microenvironment, and have a potential for the applications of reliable cell-based screening and assays including cytotoxicity test, real-time cell viability monitoring, and continuous dose-response assay.

Keywords

Microfluidics 3-D cell culture Peptide scaffold Cell-based assays Cytotoxicity 

Notes

Acknowledgments

This research was supported by the Ministry of Commerce, Industry and Energy (MOCIE) and by the Nano/Bio Science & Technology Program (M10536090002-05N3609-00210) of the Ministry of Science and Technology (MOST). The authors also thank the CHUNG Moon Soul Center for BioInformation and BioElectronics, KAIST. The microfabrication work was performed at the Digital Nanolocomotion Center.

References

  1. A. Abbott, Nature 424, 870–872 (2003).CrossRefGoogle Scholar
  2. M. Anders, R. Hansen, R.-X. Ding, K.A. Rauen, M.J. Bissell, and W.M. Korn, Proc. Natl. Acad. Sci. U.S.A. 100, 1943–1948 (2003).CrossRefGoogle Scholar
  3. C.J. Bettinger, E.J. Weinberg, K.M. Kulig, J.P. Vacanti, Y. Wang, J.T. Borenstein, and R. Langer, Adv. Mater. 18, 165–169 (2006).CrossRefGoogle Scholar
  4. M.A. Bokhari, G. Akay, S. Zhang, and M.A. Birch, Biomaterials 26, 5198–5208 (2005).CrossRefGoogle Scholar
  5. T. Braschler, R. Johann, M. Heule, L. Metref, and P. Renaud, Lab Chip 5, 553–559 (2005).CrossRefGoogle Scholar
  6. B.G. Chung, L.A. Flanagan, S.W. Rhee, P.H. Schwartz, A.P. Lee, E.S. Monuki, and N.L. Jeon, Lab Chip 5, 401–406 (2005).CrossRefGoogle Scholar
  7. S.K.W. Dertinger, D.T. Chiu, N.L. Jeon, and G.M. Whitesides, Anal. Chem. 73, 1240–1246 (2001).CrossRefGoogle Scholar
  8. D.C. Duffy, J.C. McDonald, O.J.A. Schueller, and G.M. Whitesides, Anal. Chem. 70, 4974–4984 (1998).CrossRefGoogle Scholar
  9. G.G. Giordano, R.C. Thomson, S.L. Ishaug, A.G. Mikos, S. Cumber, C.A. Garcia, and D. Lahiri-Munir, J. Biomed. Mater. Res. 34, 87–93 (1997).CrossRefGoogle Scholar
  10. R. Glicklis, L. Shapiro, R. Agbaria, J.C. Merchuk, and S. Cohen, Biotechnol. Bioeng. 67, 344–353 (2000).CrossRefGoogle Scholar
  11. M.A. Holden, S. Kumar, E.T. Castellana, A. Beskok, and P.S. Cremer, Sens. Actuators B Chem. 92, 199–207 (2003).CrossRefGoogle Scholar
  12. T.C. Holmes, S. de Lacalle, X. Su, G. Liu, A. Rich, and S. Zhang, Proc. Natl. Acad. Sci. U.S.A. 97, 6728–6733 (2000).CrossRefGoogle Scholar
  13. J.A. Hubbell, Biotechnology 13, 565–576 (1995).CrossRefGoogle Scholar
  14. P.J. Hung, P.J. Lee, P. Sabounchi, N. Aghdam, R. Lin, and L.P. Lee, Lab Chip 5, 44–48 (2005).CrossRefGoogle Scholar
  15. C. Ionescu-Zanetti, R.M. Shaw, J. Seo, Y.-N. Jan, L.Y. Jan, and L.P. Lee, Proc. Natl. Acad. Sci. U.S.A. 102, 9112–9117 (2005).CrossRefGoogle Scholar
  16. N.L. Jeon, H. Baskaran, S.K.W. Dertinger, G.M. Whitesides, L.V. De Water, and M. Toner, Nat. Biotechnol. 20, 826–830 (2002).Google Scholar
  17. K. Kataoka, Y. Nagao, T. Nukui, I. Akiyama, K. Tsuru, S. Hayakawa, A. Osaka, and N.-H. Huh, Biomaterials 26, 2509–2516 (2005).CrossRefGoogle Scholar
  18. H. Kurosawa, R. Yasuda, Y. Osano, and Y. Amano, Cytotechnology 36, 85–92 (2001).CrossRefGoogle Scholar
  19. E. Leclerc, Y. Sakai, and T. Fujii, Biomed. Microdevices 5, 109–114 (2003).CrossRefGoogle Scholar
  20. E. Leclerc, Y. Sakai, and T. Fujii, Biotechnol. Prog. 20, 750–755 (2004).CrossRefGoogle Scholar
  21. E. Leclerc, B. David, L. Griscom, B. Lepioufle, T. Fujii, P. Layrolle, and C. Legallaisa, Biomaterials 27, 586–595 (2006).CrossRefGoogle Scholar
  22. J.S.H. Lee, Y. Hu, and D. Li, Anal. Chim. Acta 543, 99–108 (2005).CrossRefGoogle Scholar
  23. V.A. Liu and S.N. Bhatia, Biomed. Microdevices 4, 257–266 (2002).CrossRefGoogle Scholar
  24. E.M. Lucchetta, J.H. Lee, L.A. Fu, N.H. Patel, and R.F. Ismagilov, Nature 434, 1134–1138 (2005).CrossRefGoogle Scholar
  25. H. Mao, P.S. Cremer, and M.D. Manson, Proc. Natl. Acad. Sci. U.S.A. 100, 5449–5454 (2003).CrossRefGoogle Scholar
  26. P.V. Moghe, R.N. Coger, M. Toner, and M.L. Yamush, Biotechnol. Bioeng. 56, 706–711 (1997).CrossRefGoogle Scholar
  27. D.J. Mooney, P.M. Kaufmann, K. Sano, S.P. Schwendeman, K. Majahod, B. Schloo, J.P. Vacanti, and R. Langer, Biotechnol. Bioeng. 50, 422–429 (1996).CrossRefGoogle Scholar
  28. C. Neils, Z. Tyree, B. Finlayson, and A. Folch, Lab Chip 4, 342–350 (2004).CrossRefGoogle Scholar
  29. T.G. Park, J. Biomed. Mater. Res. 59, 127–135 (2002).CrossRefGoogle Scholar
  30. J. Pihl, J. Sinclair, E. Sahlin, M. Karlsson, F. Petterson, J. Olofsson, and O. Orwar, Anal. Chem. 77, 3897–3903 (2005).CrossRefGoogle Scholar
  31. C.E. Semino, J.R. Merok, G.G. Crane, G. Panagiotakos, and S. Zhang, Differentiation 71, 262–270 (2003).CrossRefGoogle Scholar
  32. W. Tan and T.A. Desai, Tissue Eng. 9, 255–267 (2003).CrossRefGoogle Scholar
  33. W. Tan and T.A. Desai, Biomaterials 25, 1355–1364 (2004).CrossRefGoogle Scholar
  34. W. Tan and T.A. Desai, J. Biomed. Mater. Res. A 72, 146–160 (2005).Google Scholar
  35. G.M. Walker, M.S. Ozers, and D.J. Beebe, Sens. Actuators B Chem. 98, 347–355 (2004).CrossRefGoogle Scholar
  36. G.M. Walker, H.C. Zeringue, and D.J. Beebe, Lab Chip 4, 91–97 (2004).CrossRefGoogle Scholar
  37. M. Yang, J. Yang, C.-W. Li, and J. Zhao, Lab Chip 2, 158–163 (2002).CrossRefGoogle Scholar
  38. J.H. Yeon and J.-K. Park, Anal. Biochem. 341, 308–315 (2005).CrossRefGoogle Scholar
  39. H. Yokoi, T. Kinoshita, and S. Zhang, Proc. Natl. Acad. Sci. U.S.A. 102, 8414–8419 (2005).CrossRefGoogle Scholar
  40. S. Zhang, T. Holmes, C. Lockshin, and A. Rich, Proc. Natl. Acad. Sci. U.S.A. 90, 3334–3338 (1993).CrossRefGoogle Scholar
  41. S. Zhang, T.C. Holmes, C.M. DiPersio, R.O. Hynes, X. Su, and A. Rich, Biomaterials 16, 1385–1393 (1995).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Department of BioSystemsKorea Advanced Institute of Science and Technology (KAIST)Yuseong-guRepublic of Korea

Personalised recommendations