Biomedical Microdevices

, Volume 9, Issue 2, pp 149–157

Microfluidic patterning for fabrication of contractile cardiac organoids

  • Ali Khademhosseini
  • George Eng
  • Judy Yeh
  • Peter A. Kucharczyk
  • Robert Langer
  • Gordana Vunjak-Novakovic
  • Milica Radisic


The development of in vitro methods of engineering three-dimensional cardiac tissues can be useful for tissue replacement, diagnostics and drug discovery. Here, we introduce the use of patterned hyaluronic acid (HA) substrates generated using microfluidic patterning as a method of fabricating 3D cardiac organoids. HA micropatterns served as inductive templates for organoid assembly. Upon seeding, cardiomyocytes elongated and aligned along the pattern direction attaching preferentially to the glass substrate and the interface between HA patterns and glass substrate. After 3 days in culture, the linearly aligned myocytes detached from the surface and formed contractile cardiac organoids. The procedure can be utilized to simply, rapidly and inexpensively create in vitro cardiac tissue models.


Patterning Microfluidic Cardiomyocyte Hyaluronic acid Tissue engineering 


  1. G. Abantangelo and P. Weigel, New frontiers in medical science: redefining hyaluronan (Elsevier, Amsterdam, 2000).Google Scholar
  2. K. Baar, R. Birla, M.O. Boluyt, et al., Faseb J. 19, 275 (2005).Google Scholar
  3. E.A. Balazs, Int. Ophthalmology Clinics 13, 169 (1973).CrossRefGoogle Scholar
  4. S.N. Bhatia, M.L. Yarmush, and M. Toner, J. Biomed. Mater. Res. 34, 189 (1997).CrossRefGoogle Scholar
  5. S.N. Bhatia, U.J. Balis, M.L. Yarmush, et al., Biotechnol. Prog. 14, 378 (1998a).CrossRefGoogle Scholar
  6. S.N. Bhatia, U.J. Balis, M.L. Yarmush, et al., J. Biomater. Sci. Polym. Ed. 9, 1137 (1998b).Google Scholar
  7. S.N. Bhatia, U.J. Balis, M.L. Yarmush, et al., Faseb J. 13, 1883 (1999).Google Scholar
  8. S.Y. Boateng, T.J. Hartman, N. Ahluwalia, et al., Am. J. Physiol. Cell Physiol. 285, C171 (2003).Google Scholar
  9. P. Bulpitt and D. Aeschlimann, J. Biomed. Mater. Res. 47, 152 (1999).CrossRefGoogle Scholar
  10. N. Bursac, M. Papadaki, J.A. White, et al., Tissue Eng. 9, 1243 (2003).CrossRefGoogle Scholar
  11. R.L. Carrier, M. Papadaki, M. Rupnick, et al., Biotechnol. Bioeng. 64, 580 (1999).CrossRefGoogle Scholar
  12. C.S. Chen, M. Mrksich, S. Huang, et al., Science 276, 1425 (1997).CrossRefGoogle Scholar
  13. D.T. Chiu, N.L. Jeon, S. Huang, et al., Proc. Natl. Acad. Sci. USA 97, 2408 (2000).CrossRefGoogle Scholar
  14. J. Deutsch, D. Motlagh, B. Russell, et al., J. Biomed. Mater. Res. 53, 267 (2000).CrossRefGoogle Scholar
  15. V.G. Fast, S. Rohr, and R.E. Ideker, Am. J. Physiol. Heart Circ. Physiol. 278, H688 (2000).Google Scholar
  16. A. Folch, B.H. Jo, O. Hurtado, et al., J. Biomed. Mater. Res. 52, 346 (2000).CrossRefGoogle Scholar
  17. G. Gaudesius, M. Miragoli, S.P. Thomas, et al., Circulation Res. 93, 421 (2003).CrossRefGoogle Scholar
  18. J. Hyun, H. Ma, Z. Zhang, et al., Adv. Mat. 15, 576 (2003).CrossRefGoogle Scholar
  19. J. Hyun, Y.J. Zhu, A. Liebmann-Vinson, et al., Langmuir 17, 6358 (2001).CrossRefGoogle Scholar
  20. A. Khademhosseini, K.Y. Suh, J.M. Yang, et al., Biomaterials 25, 3583 (2004).CrossRefGoogle Scholar
  21. W.G. Koh, L.J. Itle, and M.V. Pishko, Anal. Chem. 75, 5783 (2003).CrossRefGoogle Scholar
  22. R.-K. Li, T.M. Yau, R.D. Weisel, et al., J. Thoracic Cardiovasc. Surg. 119, 368 (2000).CrossRefGoogle Scholar
  23. T.C. McDevitt, J.C. Angello, M.L. Whitney, et al., J. Biomed. Mater. Res. 60, 472 (2002).CrossRefGoogle Scholar
  24. M. Morra, Biomacromolecules 6, 1205 (2005).CrossRefGoogle Scholar
  25. M. Mrksich and G.M. Whitesides, Annu. Rev. Biophys. Biomol. Struct. 25, 55 (1996).CrossRefGoogle Scholar
  26. M. Mrksich, C.S. Chen, Y. Xia, et al., Proc. Natl. Acad. Sci. USA 93, 10775 (1996).CrossRefGoogle Scholar
  27. M. Mrksich, L.E. Dike, J. Tien, et al., Exp. Cell. Res. 235, 305 (1997).CrossRefGoogle Scholar
  28. S. Murakami, S. Takayama, K. Ikezawa, et al., J. Periodontal Res. 425 (1999).Google Scholar
  29. S. Oerther, H. Le Gall, E. Payan, et al., Biotechnol. Bioeng. 63, 206 (1999).CrossRefGoogle Scholar
  30. E. Ostuni, R. Kane, C.S. Chen, et al., Langmuir 16, 7811 (2000).CrossRefGoogle Scholar
  31. M. Pei, L.A. Solchaga, J. Seidel, et al., Faseb J. 16, 1691 (2002).Google Scholar
  32. D. Piacquadio, M. Jarcho, and R. Goltz, J. Am. Acad. Dermatol. 36, 544 (1997).CrossRefGoogle Scholar
  33. K.L. Prime and G.M. Whitesides, Science 252, 1164 (1991).CrossRefGoogle Scholar
  34. M. Radisic, J. Malda, E. Epping, et al., Biotechnol. Bioeng. 93, 323 (2006).Google Scholar
  35. M. Radisic, W. Deen, R. Langer, et al., Am. J. Physiol-Heart Circulatory Physiol. 288, H1278 (2005).CrossRefGoogle Scholar
  36. M. Radisic, M. Euloth, L. Yang, et al., Biotechnol. Bioeng. 82, 403 (2003).CrossRefGoogle Scholar
  37. M. Radisic, H. Park, H. Shing, et al., Proc. Natl. Acad. Sci. USA 101, 18129 (2004a).CrossRefGoogle Scholar
  38. M. Radisic, L. Yang, J. Boublik, et al., Am. J. Physiol.: Heart Circulatory Physiol. 286, H507 (2004b).CrossRefGoogle Scholar
  39. K. Rakusan and B. Korecky, Growth 46, 275 (1982).Google Scholar
  40. S. Rohr, D.M. Scholly, and A.G. Kleber, Circ. Res. 68, 114 (1991).Google Scholar
  41. E.V. Romanova, K.A. Fosser, S.S. Rubakhin, et al., Faseb J 18, 1267 (2004).Google Scholar
  42. T. Shimizu, M. Yamato, Y. Isoi, et al., Circ. Res. 90, e40 (2002).CrossRefGoogle Scholar
  43. J. Sinclair and A.K. Salem, Biomaterials 27, 2090 (2006).CrossRefGoogle Scholar
  44. R. Singhvi, A. Kumar, G.P. Lopez, et al., Science 264, 696 (1994).CrossRefGoogle Scholar
  45. K.Y. Suh, A. Khademhosseini, J.M. Yang, et al., Adv. Mater. 16, 584 (2004).CrossRefGoogle Scholar
  46. S. Takayama, J.C. McDonald, E. Ostuni, et al., Proc. Natl. Acad. Sci. USA 96, 5545 (1999).CrossRefGoogle Scholar
  47. W. Tan and T.A. Desai, Tissue Eng. 9, 255 (2003).CrossRefGoogle Scholar
  48. W. Tan and T.A. Desai, Biomaterials 25, 1355 (2004).CrossRefGoogle Scholar
  49. S.P. Thomas, L. Bircher-Lehmann, S.A. Thomas, et al., Circ. Res. 87, 467 (2000).Google Scholar
  50. G.M. Whitesides, E. Ostuni, S. Takayama, et al., Annu. Rev. Biomed. Eng. 3, 335 (2001).CrossRefGoogle Scholar
  51. R.H. Whittington, L. Giovangrandi, and G.T. Kovacs, IEEE Trans. Biomed. Eng. 52, 1261 (2005).CrossRefGoogle Scholar
  52. W.H. Zimmermann, K. Schneiderbanger, P. Schubert, et al., Circ. Res. 90, 223 (2002).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Ali Khademhosseini
    • 1
    • 2
  • George Eng
    • 3
    • 6
  • Judy Yeh
    • 3
  • Peter A. Kucharczyk
    • 4
  • Robert Langer
    • 1
    • 3
  • Gordana Vunjak-Novakovic
    • 1
    • 6
  • Milica Radisic
    • 5
  1. 1.Harvard-MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Center for Biomedical Engineering, Brigham and Women’s HospitalHarvard Medical SchoolBostonUSA
  3. 3.Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  4. 4.School of EngineeringUniversity of GuelphGuelphCanada
  5. 5.Institute of Biomaterials and Biomedical Engineering, Department of Chemical Engineering and Applied ChemistryUniversity of TorontoTorontoCanada
  6. 6.Department of Biomedical EngineeringColumbia UniversityNew YorkUSA

Personalised recommendations