Biomedical Microdevices

, Volume 9, Issue 1, pp 43–50

Rapid circular microfluidic mixer utilizing unbalanced driving force

Article

Abstract

This paper proposes a novel rapid circular microfluidic mixer for micro-total-analysis-systems (μ-TAS) applications in which an unbalanced driving force is used to mix fluids in a circular chamber at low Reynolds numbers (Re). The microfluidic mixer has a three-layered structure and is fabricated on low-cost glass slides using a simple and reliable fabrication process. Using hydrodynamic pumps, fluids are driven from two inlet ports into a circular mixing chamber. Each inlet port separates into two separate channels, which are then attached to opposite sides of the 3-dimensional (3-D) circular mixing chamber. The unequal lengths of these inlet channels generate an unbalanced driving force, which enhances the mixing effect in the mixing chamber. Numerical simulations are performed to predict the fluid phenomena in the mixing chamber and to estimate the mixing performance under various Reynolds number conditions. The numerical results are verified by performing flow visualization experiments. A good agreement is found between the two sets of results. The numerical and experimental results reveal that the mixing performance can reach 91% within a mixing chamber of 1 mm diameter at a Reynolds number of Re = 3. Additionally, the results confirm that the unbalanced driving force produces a flow rotation in the circular mixer at low Reynolds numbers, which significantly enhances the mixing performance. The novel micromixing method presented in this study provides a simple solution for mixing problems in Lab-on-a-chip systems.

Keywords

Circular microfluidic mixer Low Reynolds numbers Lab-on-a-chip 

References

  1. E. Biddiss, D. Erickson, and D. Li, Anal. Chem. 76, 3208 (2004).CrossRefGoogle Scholar
  2. B.J. Burke and F.E. Regnier, Anal. Chem. 75, 1786 (2003).CrossRefGoogle Scholar
  3. C.C. Chang and R.J. Yang, J. Micromech. Microeng. 14, 550 (2004).CrossRefGoogle Scholar
  4. H. Chen and J.C. Meiners, Appl. Phys. Lett. 84, 2193 (2004).CrossRefGoogle Scholar
  5. Y.C. Chung, Y.L. Hsu, C.P. Jen, M.C. Lu, and Y.C. Lin, Lab on a Chip 4, 70 (2004).CrossRefGoogle Scholar
  6. J.T. Coleman and D. Sinton, Microfluidics Nanofluidics 1, 319 (2005).CrossRefGoogle Scholar
  7. A. Dodge, M.C. Jullien, Y.K. Lee, X. Niu, F. Okkels, and P. Tabeling, Comptes Rendus Physique 5, 559 (2004).CrossRefGoogle Scholar
  8. D. Erickson and D. Li, Langmuir 18, 1883 (2002).CrossRefGoogle Scholar
  9. R. Ferrigno, J.N. Lee, X. Jiang, and G.M. Whitesides, Anal. Chem. 76, 2273 (2004).CrossRefGoogle Scholar
  10. L.M. Fu and C.H. Lin, Anal. Chem. 75, 5790 (2003).CrossRefGoogle Scholar
  11. L.M. Fu, R.J. Yang, G.B. Lee, and Y.J. Pan, Electrophoresis 24, 3026 (2003a).CrossRefGoogle Scholar
  12. L.M. Fu, R.J. Yang, C.H. Lin, G.B. Lee, and Y.J. Pan, Anal Chimica ACTA 507, 163 (2004).CrossRefGoogle Scholar
  13. L.M. Fu, R.J. Yang, C.H. Lin, and Y.S. Chien, Electrophoresis 26, 1814 (2005).CrossRefGoogle Scholar
  14. L.M. Fu and C.H. Lin, Electrophoresis 25, 3652 (2005).CrossRefGoogle Scholar
  15. T. Fujii, Y. Sando, K. Higashino, and Y. Fujii, Lab on a Chip 3, 193 (2003).CrossRefGoogle Scholar
  16. I. Glasgow, S. Lieber, and N.Aubry, Anal. Chem. 76, 4825 (2004).CrossRefGoogle Scholar
  17. S. Hardt and F. Schönfeld, AIChE J. 49, 578 (2003).CrossRefGoogle Scholar
  18. B. He, B.J. Burke, X. Zhang, R. Zhang, and F.E. Regnier, Anal. Chem. 73, 1942 (2001).CrossRefGoogle Scholar
  19. C.C. Hong, J.W.Choi, and C.H. Ahn, Lab on a Chip 4, 109 (2004).CrossRefGoogle Scholar
  20. F. Jiang, K.S. Drese, S. Hardt, M. Küpper, and F. Schönfeld, AIChE J. 50, 2297 (2004).CrossRefGoogle Scholar
  21. T.J. Johnson, D. Ross, and L.E. Locascio, Anal. Chem. 74, 45 (2002).CrossRefGoogle Scholar
  22. M. Kakuta, F.G. Bessoth, and A. Manz, Chem. Rec. 1, 395 (2001).CrossRefGoogle Scholar
  23. T.G. Kang and T.H. Kwon, J. Micromech. Microeng. 14, 891 (2004).CrossRefGoogle Scholar
  24. T. Kamei, N.M. Toriello, E.T. Lagally, R.G. Blazej, J.R. Scherer, R.A. Street, and R.A. Mathies, Biomed. Microdevices 7(2), 147 (2005).CrossRefGoogle Scholar
  25. D.S. Kim, S.W. Lee, T.H. Kwon, and S.S. Lee, J. Micromech. Microeng. 14, 798 (2004a).CrossRefGoogle Scholar
  26. D.S. Kim, I.H. Lee, T.H. Kwon, and D. Cho, J. Micromech. Microeng. 14, 1294 (2004b).CrossRefGoogle Scholar
  27. J.B. Knight, A. Vishwanath, J.P. Brody, and R.H. Austin, Phys. Rev. Lett. 80, 3863 (1998).CrossRefGoogle Scholar
  28. B.P. Leonard, Proc. Int. Conf. on Numerical Methods in Laminar and Turbulent Flow, Part 1 (Pineridge Press, Swansea, 1987).Google Scholar
  29. C.H. Lin, L.M. Fu, and Y.S. Chien, Anal. Chem. 76, 5265 (2004).CrossRefGoogle Scholar
  30. C.H. Lin, C.H. Tsai, and L.M. Fu, J. Micromech. Micromachining 15, 935 (2005).CrossRefGoogle Scholar
  31. Y.Z. Liu, B.J. Kim, and H.J. Sung, Int. J. Heat Fluid Fl. 25, 986 (2004).CrossRefGoogle Scholar
  32. R.H. Liu, M.A. Stremler, K.V. Sharp, M.G. Olsen, J.G. Santiago, R.J. Adrian, H. Aref, and D.J. Beebe, J. Microelectromech. S. 9,190 (2000).CrossRefGoogle Scholar
  33. R.H. Liu, R. Lenigk, R.L. Druyor-Sanchez, J. Yang, and P. Grodzinski, Anal. Chem. 75, 1911 (2003).CrossRefGoogle Scholar
  34. P. Löb, K.S. Drese, V. Hessel, S. Hardt, C. Hofmann, H. Löwe, R. Schenk, and F. Schönfeld Chem. Eng. Technol. 27, 340 (2004).CrossRefGoogle Scholar
  35. H. Mao, T. Yang, and P.S. Crèmer, J. Am. Chem. Soc. 124, 4432 (2002).CrossRefGoogle Scholar
  36. V. Mengeaud, J. Josserand, and H.H. Girault, Anal. Chem. 74, 4279 (2002).CrossRefGoogle Scholar
  37. X. Niu, and Y.K. Lee, J. Micromech. Micromachining 13, 454 (2003).CrossRefGoogle Scholar
  38. S.J. Park, J.K. Kim, J. Park, S. Chung, C. Chung, and J.K. Chang, J. Micromech. Microeng. 14, 6 (2004).CrossRefGoogle Scholar
  39. F. Schönfeld, and S. Hardt, AIChE J. 50, 771 (2004).CrossRefGoogle Scholar
  40. A.D. Stroock, S.K.W. Dertinger, A. Ajdari, I. Mezić, H.A. Stone, and G.M. Whitesides, Science 295, 647 (2002).CrossRefGoogle Scholar
  41. Z. Tang, S. Hong, D. Djukic, V. Modi, A. West, J. Yardley, and R.M. Osgood, J. Micromech. Microeng. 12, 870 (2002).CrossRefGoogle Scholar
  42. M. Tabuchi, M. Ueda, N. Kaji, Y. Yamasaki, Y. Nagasaki, K. Yoshikawa, K. Kataoka, and Y. Baba, Nat. Biotechnol. 22, 337 (2004).CrossRefGoogle Scholar
  43. J.P. van Doormal and G.D. Raithby, Numer. Heat Transfer 7, 147 (1984).CrossRefGoogle Scholar
  44. R.A. Vijiayendran, K.M. Motsegood, D.J. Beebe, and D.E. Leckband, Langmuir 19, 1824 (2003).CrossRefGoogle Scholar
  45. K. Wang, S. Yue, L. Wang, A. Jin, C. Gu, P. Wang, Y. Feng, Y. Wang, and H. Niu, Microfluidics Nanofluidics 2, 85 (2006).CrossRefGoogle Scholar
  46. C.W. Wei, J.Y. Cheng, and T.H. Young, Biomed. Microdevices 8, 65 (2006).CrossRefGoogle Scholar
  47. S.H. Wong, M.C.L. Ward, and C.W. Wharton, Sensor. Actuator. B. 100, 365 (2004).CrossRefGoogle Scholar
  48. Z. Wu, N.T. Nguyen, and X.Y. Huang, J. Micromech. Microeng. 14, 604 (2004).CrossRefGoogle Scholar
  49. Z. Wu and N.T. Nguyen, Biomed. Microdevices 7(1), 131 (2005).CrossRefGoogle Scholar
  50. Q. Xiang, B. Xu, R. Fu, and D. Li, Biomed. Microdevices 7(4), 273 (2005).CrossRefGoogle Scholar
  51. X. Xuan and D. Li, Electrophoresis 26, 3552 (2005).CrossRefGoogle Scholar
  52. Z. Yang, H. Goto, M. Matsumoto, and R. Maeda, Electrophoresis 21, 116 (2000).CrossRefGoogle Scholar
  53. G.G. Yaralioglu, I.O. Wygant, T.C. Marentis, and B.T. Khuri-Yakub, Anal. Chem. 76, 3694 (2004).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Department of Mechanical and Electro-Mechanical EngineeringNational Sun Yat-sen UniversityKaohsiungTaiwan
  2. 2.Department of Vehicle EngineeringNational Pingtung University of Science and TechnologyPingtungTaiwan
  3. 3.Department of Materials EngineeringNational Pingtung University of Science and TechnologyPingtungTaiwan

Personalised recommendations