Biomedical Microdevices

, Volume 9, Issue 1, pp 7–13

Three dimensional MEMS microfluidic perfusion system for thick brain slice cultures

  • Yoonsu Choi
  • Maxine A. McClain
  • Michelle C. LaPlaca
  • A. Bruno Frazier
  • Mark G. Allen
Article

Abstract

In vitro tissue culture models are often benchmarked by their ability to replicate in vivo function. One of the limitations of in vitro systems is the difficulty in preserving an orchestrated cell population, especially for generating three-dimensional tissue equivalents. For example, tissue-engineering applications involve large high-density constructs, requiring a perfusing system that is able to apply adequate oxygen and nutrients to the interior region of the tissue. This is particularly true with respect to thick tissue sections harvested for in vitro culture. We have fabricated a microneedle-based perfusion device for high-cell-density in vitro tissue culture from SU-8 photosensitive epoxy and suitable post-processing. The device was tested for its ability to improve viability in slices of harvested brain tissue. This model was chosen due to its acute sensitivity to disruptions in its nutrient supply. Improved viability was visible in the short term as assessed via live-dead discriminating fluorescent staining and confocal microscopy. This perfusion system opens up many possibilities for both neurobiological as well as other culture systems.

Keywords

Microneedle SU-8 Hippocampal brain slices 

Reference

  1. C.J. Bettinger, E.J. Weinberg, K.M. Kulig, J.P. Vacanti, Y.D. Wang, J.T. Borenstein, and R. Langer, Adv. Mater. 18, 165 (2006).CrossRefGoogle Scholar
  2. L.E. Buckby, R. Mummery, M.R. Crompton, P.W. Beesley, and R.M. Empson, Dev. Brain Res. 150, 1 (2004).CrossRefGoogle Scholar
  3. S. Chandrasekaran, J.D. Brazzle, and A.B. Frazier, J. Microelectro. Sys. 12, 281 (2003).CrossRefGoogle Scholar
  4. Y. Choi, S. CHoi, R.H. Shafer, and M.G. Allen, In the Thirteenth International Conference on Solid-State Sensors, Actuators, and Microsystems (Transducer Research Foundation, SanDiego, 2005), p. 1986.Google Scholar
  5. A. De Simoni, C.B. Griesinger, and F.A. Edwards, J. Physiol.-London 550, 135 (2003).CrossRefGoogle Scholar
  6. B.H. Gahwiler, M. Capogna, D. Debanne, R.A. McKinney, and S.M. Thompson, Trends Neurosci. 20, 471 (1997).CrossRefGoogle Scholar
  7. M.E. Gomes, H.L. Holtorf, R.L. Reis, and A.G. Mikos, Tissue Eng. 12, 801 (2006a).CrossRefGoogle Scholar
  8. M.E. Gomes, R.L. Reis, and A.G. Mikos, Adv. Mater. Forum Iii, Pts 1 and 2 514–516, 980 (2006b).Google Scholar
  9. M. O. Heuschkel, M. Fejtl, M. Raggenbass, D. Bertrand, and P. Renaud, J. Neurosci. Meth. 114, 135 (2002).CrossRefGoogle Scholar
  10. K.I. Jolic, M.K. Ghantasala, and E.C. Harvey, J. Micromech. Microeng. 14, 388 (2004).CrossRefGoogle Scholar
  11. B.W. Kristensen, J. Noraberg, and J. Zimmer, Brain Res. 973, 303 (2003).CrossRefGoogle Scholar
  12. D.V. McAllister, M.G. Allen, and M.R. Prausnitz, Annu. Rev. Biomed. Eng. 2, 289 (2000).CrossRefGoogle Scholar
  13. M.A. McClain, M.C. LaPlaca, and A.B. Frazier, A. In the Ninth International Conference on Miniaturized Systems for Chemistry and Life Sciences (Transducer Research Foundatin, San Diego, 2005), p. 897.Google Scholar
  14. K. Mehta and J.J. Linderman, Biotechnol. Bioeng. 94, 596 (2006).CrossRefGoogle Scholar
  15. J. Noraberg, B.W. Kristensen, and J. Zimmer, Eur. J. Neurosci. 12, 238 (2000).Google Scholar
  16. S.J. Paik, A. Byun, J.M. Lim, Y. Park, A. Lee, S. Chung, J.K. Chang, K. Chun, and D.D. Cho, Sens. Actu. A-Phys. 114, 276 (2004).CrossRefGoogle Scholar
  17. M. Radisic, J. Malda, E. Epping, W.L. Geng, R. Langer, and G. Vunjak-Novakovic, Biotechnol. Bioeng. 93, 332 (2006).CrossRefGoogle Scholar
  18. G. Vunjak-Novakovic, M. Radisic, and B. Obradovic, J. Chem. Technol. Biotechnol. 81, 485 (2006).CrossRefGoogle Scholar
  19. N. Wilke, A. Mulcahy, S.R. Ye, and A. Morrissey, Microelectr. J. 36, 650 (2005).CrossRefGoogle Scholar
  20. C.P. Wu, W.P. Luk, J. Gillis, F. Skinner, and L. Zhang, J. Neurophysiol. 93, 2302 (2005).CrossRefGoogle Scholar
  21. C.P. Wu, H. Shen, W.P. Luk, and L. Zhang, J. Physiol.-London 540, 509 (2002).CrossRefGoogle Scholar
  22. X. Xu, J.P.G. Urban, U. Tirlapur, M.H. Wu, Z. Cui, and Z.F. Cui, Biotechnol. Bioeng. 93, 1103 (2006).CrossRefGoogle Scholar
  23. Y.K. Yoon, J.S. Kenney, A.T. Hunt, and M.G. Allen, J. Micromech. Microeng. 16, 225 (2006).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Yoonsu Choi
    • 1
  • Maxine A. McClain
    • 1
  • Michelle C. LaPlaca
    • 2
  • A. Bruno Frazier
    • 1
  • Mark G. Allen
    • 1
  1. 1.School of Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations