Biomedical Microdevices

, Volume 8, Issue 3, pp 191–199 | Cite as

3D tissue culture substrates produced by microthermoforming of pre-processed polymer films

  • S. Giselbrecht
  • T. Gietzelt
  • E. Gottwald
  • C. Trautmann
  • R. Truckenmüller
  • K. F. Weibezahn
  • A. Welle
Article

Abstract

We describe a new technology based on thermoforming as a microfabrication process. It significantly enhances the tailoring of polymers for three dimensional tissue engineering purposes since for the first time highly resolved surface and bulk modifications prior to a microstructuring process can be realised. In contrast to typical micro moulding techniques, the melting phase is avoided and thus allows the forming of pre-processed polymer films. The polymer is formed in a thermoelastic state without loss of material coherence. Therefore, previously generated modifications can be preserved. To prove the feasibility of our newly developed technique, so called SMART = Substrate Modification And Replication by Thermoforming, polymer films treated by various polymer modification methods, like UV-based patterned films, and films modified by the bombardment with energetic heavy ions, were post-processed by microthermoforming. The preservation of locally applied specific surface and bulk features was demonstrated e.g. by the selective adhesion of cells to patterned microcavity walls.

Keywords

Microthermoforming Organotypic cell culture Ion track technology Polymer modification Surface patterning Smart 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.S. Chen, M. Mrksich, S. Huang, G.M. Whitesides, and D.E. Ingber, Biotechnol Prog 14, 356 (1998).CrossRefGoogle Scholar
  2. S.-M. Chia, K.W. Leong, J. Li, X. Xu, K. Zeng, P.-N. Er, S. Gao, and H. Yu, Tissue Eng 6, 481 (2000).CrossRefGoogle Scholar
  3. T.A. Desai, J. Deutsch, D. Motlagh, W. Tan, and B. Russell, Biomed Microdev 2, 123 (1999).CrossRefGoogle Scholar
  4. J.-L. Dewez, J.-B. Lhoest, E. Detrait, V. Berger, C.C. Dupont-Gillain, L.-M. Vincent, Y.-J. Schneider, P. Bertrand, and P.G. Rouxhet, Biomaterials 19, 1441 (1998).CrossRefGoogle Scholar
  5. E. Eschbach, S.S. Chatterjee, M. Nöldner, E. Gottwald, H. Dertinger, K.-F. Weibezahn, and G. Knedlitschek, Journal of Cellular Biochemistry 95, 243 (2005).CrossRefGoogle Scholar
  6. R.L. Fleischer, P.B. Price, and R.M. Walker, Nuclear tracks in solids (University of California Press, Berkeley, 1975).Google Scholar
  7. K. Funatsu, H. Ijima, K. Nakazawa, Y.-i. Yamashita, M. Shimada, and K. Sugimachi, Artificial Organs 25, 194 (2001).CrossRefGoogle Scholar
  8. S. Giselbrecht, L. Eichhorn, T. Gietzelt, E. Gottwald, A.E. Guber, W.K. Schomburg, R. Truckenmüller, and K.-F. Weibezahn (VDE, München, 2003), 147.Google Scholar
  9. S. Giselbrecht, T. Gietzelt, A.E. Guber, E. Gottwald, C. Trautmann, R. Truckenmüller, and K.-F. Weibezahn, IEE Proc-Nanobiotechnol 151, 151 (2004).CrossRefGoogle Scholar
  10. V. Hasirci, F. Berthiaume, S.P. Bondre, J.D. Gresser, D.J. Trantolo, M. Toner, and D.L. Wise, Tissue Eng 7, 385 (2001).CrossRefGoogle Scholar
  11. M. Heckele and W.K. Schomburg, J Micromechan Microeng 14, R1 (2004).CrossRefGoogle Scholar
  12. G. Knedlitschek, F. Schneider, E. Gottwald, T. Schaller, E. Eschbach, and K.F. Weibezahn, J Biomech Eng 121, 35 (1999).Google Scholar
  13. L.A. Kunz-Schughart, J.P. Freyer, F. Hofstaedter, and R. Ebner, J Biomol Screen 9, 273 (2004).CrossRefGoogle Scholar
  14. E. Leclerc, Y. Sakai, and T. Fujii, Biomed Microdev 5, 109 (2003).CrossRefGoogle Scholar
  15. Y. Martelé, K. Callewaert, K. Naessens, P.V. Daele, R. Baets, and E. Schacht, Mater. Sci. Eng. C 23, 341 (2003).CrossRefGoogle Scholar
  16. M. Mrksich, and G.M. Whitesides, Annu Rev Biophys Biomol Struct 25, 55 (1996).CrossRefGoogle Scholar
  17. C.S. Ranucci, A. Kumar, S.P. Batra, and P.V. Moghe, Biomaterials 21, 783 (2000).CrossRefGoogle Scholar
  18. C.E. Semino, J.R. Merok, G.G. Crane, G. Panagiotakos, and S. Zhang, Differentiation 71, 262 (2003).CrossRefGoogle Scholar
  19. J.D. Snyder, and T.A. Desai, J Biomater Sci Polym Ed 12, 921 (2001).CrossRefGoogle Scholar
  20. R. Spohr, Ion Tracks and Microtechnology (Vieweg, Braunschweig, 1990).Google Scholar
  21. T. Takezawa, Biomaterials 24, 2267 (2003).CrossRefGoogle Scholar
  22. W. Tan and T.A. Desai, Biomed Microdev 5, 235 (2003).CrossRefGoogle Scholar
  23. R. Truckenmüller, S. Giselbrecht, T. Schaller, and W.K. Schomburg, (VDE, München, 2003), 315.Google Scholar
  24. R. Truckenmüller, Z. Rummler, T. Schaller, and W.K. Schomburg, (Cork, 2001), 39.Google Scholar
  25. K.F. Weibezahn, G. Knedlitschek, W. Bier, and T. Schaller, MICRO SYSTEM Technologies 94 (vde-Verlag gmbh, Berlin - Offenbach, 1994), 873.Google Scholar
  26. A. Welle, J Biomater Sci Polym Ed 15, 357 (2003).CrossRefGoogle Scholar
  27. A. Welle and E. Gottwald, Biomed Microdev 4, 33 (2002).CrossRefGoogle Scholar
  28. A. Welle, E. Gottwald, K.-F. Weibezahn, and H. Dertinger, Mat Res Soc Symp Proc (Materials Research Society, Boston, 2002), p. 175.Google Scholar
  29. N. Yamauchi, O. Yamada, T. Takahashi, K. Imai, T. Sato, A. Ito, and K. Hashizume, Placenta 24, 258 (2003).CrossRefGoogle Scholar
  30. C. Yeung and D. Leckband, Langmuir 13, 6746 (1997).CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • S. Giselbrecht
    • 1
  • T. Gietzelt
    • 2
  • E. Gottwald
    • 1
  • C. Trautmann
    • 3
  • R. Truckenmüller
    • 4
  • K. F. Weibezahn
    • 1
  • A. Welle
    • 1
  1. 1.Institute for Biological Interfaces, Forschungszentrum Karlsruhe GmbHKarlsruheGermany
  2. 2.Institute for Micro Process Engineering, Forschungszentrum Karlsruhe GmbHKarlsruheGermany
  3. 3.Department of Materials ResearchGesellschaft für Schwerionenforschung (GSI)DarmstadtGermany
  4. 4.Institute for Microstructure Technology, Forschungszentrum Karlsruhe GmbHKarlsruheGermany

Personalised recommendations