Biomedical Microdevices

, Volume 8, Issue 3, pp 215–225 | Cite as

Integrated polymerase chain reaction chips utilizing digital microfluidics

  • Yi-Hsien Chang
  • Gwo-Bin Lee
  • Fu-Chun Huang
  • Yi-Yu Chen
  • Jr-Lung Lin


This study reports an integrated microfluidic chip for polymerase chain reaction (PCR) applications utilizing digital microfluidic chip (DMC) technology. Several crucial procedures including sample transportation, mixing, and DNA amplification were performed on the integrated chip using electro-wetting-on-dielectric (EWOD) effect. An innovative concept of hydrophobic/hydrophilic structure has been successfully demonstrated to integrate the DMC chip with the on-chip PCR device. Sample droplets were generated, transported and mixed by the EWOD-actuation. Then the mixture droplets were transported to a PCR chamber by utilizing the hydrophilic/hydrophobic interface to generate required surface tension gradient. A micro temperature sensor and two micro heaters inside the PCR chamber along with a controller were used to form a micro temperature control module, which could perform precise PCR thermal cycling for DNA amplification. In order to demonstrate the performance of the integrated DMC/PCR chips, a detection gene for Dengue II virus was successfully amplified and detected. The new integrated DMC/PCR chips only required an operation voltage of 12VRMS at a frequency of 3 KHz for digital microfluidic actuation and 9VDC for thermal cycling. When compared to its large-scale counterparts for DNA amplification, the developed system consumed less sample and reagent and could reduce the detection time. The developed chips successfully demonstrated the feasibility of Lab-On-a-Chip (LOC) by utilizing EWOD-based digital microfluidics.


Digital microfluidics Electro-wetting-on- dielectric Lab-on-a-chip Polymerase chain reaction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. J. Cheng, M.A. Shoffner, G.E. Hvichia, L.J. Kricka, and P. Wilding, Nucleic Acids Res. 24, 380 (1996).CrossRefGoogle Scholar
  2. S.K. Cho, H. Moon, and C.-J. Kim, Journal of Microelectromechanical Systems 12, 70 (2003).CrossRefGoogle Scholar
  3. J.H. Daniel, S. Iqbal, R.B. Millington, D.F. Moore, C.R. Lowe, D.L. Leslie, M.A. Lee, and M.J. Pearce, Sensors Actuators A 71, 81 (1998).CrossRefGoogle Scholar
  4. A.A. Darhuber and J.P. Valentino, Journal of Microelectromechanical Systems 12, 873 (2003).CrossRefGoogle Scholar
  5. C. Decamps and J. De Coninck, Langmuir 16, 10150 (2000).CrossRefGoogle Scholar
  6. J. Fowler, H. Moon, and C-J Kim, Proceeding of the 15th IEEE Conference MEMS (IEEE, Las Vegas, Nevada, USA, 2002), p. 97.Google Scholar
  7. Z. Guttenberg, H. Müller, H. Habermüller, A. Geisbauer, J. Pipper, J. Felbel, M. Kielpinski, J. Scribaa, and A. Wixforth, Lab Chip 5, 308 (2005).CrossRefGoogle Scholar
  8. T.M. Hsieh, C.H. Luo, G.B. Lee C.S. Liao, and F.C. Huang, Journal of Medical and Biological Engineering, in press (2005).Google Scholar
  9. K. Ichimura, S.K. Oh, and M. Nakagawa, Science 288, 1624 (2000).CrossRefGoogle Scholar
  10. M.U. Kopp, A.J. de Melloo, and A. Manz, Science 28, 1046 (1998).CrossRefGoogle Scholar
  11. E.T. Lagally, P.C. Simpson, and R.A. Mathies, Sensors and Actuators B 63, 138 (2000).CrossRefGoogle Scholar
  12. C.Y. Lee, G.B. Lee, H.H. Liu, and F.C. Hwang, Int. J. Nonlinear Sci. Numer. Simul. 3, 215 (2002).MATHGoogle Scholar
  13. C.Y. Lee, G.B. Lee, J.L. Lin, F.C. Huang, C.S. Liao, and J. Micromech, Microeng 15, 1215 (2005).CrossRefGoogle Scholar
  14. J. Lee, H. Moon, J. Fowler, T. Schoellhammer T, and C-J Kim, Sensors and Actuators A 95, 259 (2002).CrossRefGoogle Scholar
  15. C.S. Liao, G.B. Lee, and H.S. Liu, Nucleic Acids Research 33, e156 (2005).CrossRefGoogle Scholar
  16. C.S. Liao, G.B. Lee, J.J. Wu, C.C. Chang, T.M. Hsieh, and C.H. Luo, Biosensors and Bioelectronics 20, 1341 (2005).CrossRefGoogle Scholar
  17. M.G. Lippmann, Ann. Chim. Phys. 5, 494 (1875).Google Scholar
  18. J. Liu, M. Enzelberger, and S. Quake, Electrophoresis 23, 1531 (2002).CrossRefGoogle Scholar
  19. H. Moon, S.K. Cho, R.L. Garrell, and C.-J. Kim, Journal of Applied Physics 92, 4080 (2002).CrossRefGoogle Scholar
  20. K.B. Mullis, F. Ferré, and R.A. Gibbs, The Polymerase Chain Reaction (Birkhäuser, Boston, 1994).Google Scholar
  21. M.A. Northrup, B. Benett, D. Hadley, P. Landre, S. Lehew, J. Richards, and P. Stratton, Anal. Chem. 70, 918 (1998).CrossRefGoogle Scholar
  22. M.A. Northrup, C. Gonzalez, D. Hadley, R.F. Hills, P. Landre, S. Lehew, R. Saiki, J.J. Shinsky, and R. Watson, Transducers, Eurosensors IX (Stockholm, Sweden, 1995), p. 764.Google Scholar
  23. P.J. Obeid, T.K. Christopoulos, H.J. Crabtree, and C.J. Backhouse, Anal. Chem. 75, 288 (2003).CrossRefGoogle Scholar
  24. P. Paik, V.K. Pamula, M.G. Pollack, and R.B. Fair, Lab Chip 3, 28 (2003).CrossRefGoogle Scholar
  25. M.G. Pollack, R.B. Fair, and A.D. Shenderov, Applied Physics Letters 77, 1725 (2000).CrossRefGoogle Scholar
  26. M.G. Pollack, P.Y. Paik, A.D. Shenderov, V.K. Pamula, F.S. Dietrich, and R.B. Fair, Micro Total Analysis System (California, USA, 2003), p. 619.Google Scholar
  27. M.G. Pollack, A.D. Shenderov, and R.B. Fair, Lab Chip 2, 96 (2002).CrossRefGoogle Scholar
  28. S. Poser, T. Schulz, U. Dillner, V. Baier, J.M. Köhler, D. Schimkat, G. Mayer, and A. Siebert, Sensors Actuators A 62, 672 (1997).CrossRefGoogle Scholar
  29. M.W.J. Prins, W.J.J. Welters, and J.W. Weekamp, Science 291, 277 (2001).CrossRefGoogle Scholar
  30. A. Quinn A, R. Sedev, and J. Ralston, Journal of Physical Chemistry B 107, 1163 (2003).CrossRefGoogle Scholar
  31. R. Rosario, G. Devens, A.A. Garcia, M. Hayes, J.L. Taraci, T. Clement, J.W. Dailey, and S.T. Picraux, Journal of Physical Chemistry B. Letter 108, 12640 (2004).CrossRefGoogle Scholar
  32. I. SchneegaβI, and J.M.Köhler, Rev. Mol. Biotechnol 82, 101 (2001).CrossRefGoogle Scholar
  33. J.A. Schwartz, J.V. Vykoukal, and R.C. Gascoyne, Lab Chip 4, 11 (2004).CrossRefGoogle Scholar
  34. M.A. Shoffner, J. Cheng, G.E. Hvichia, L.J. Kricka, and P. Wilding, Nucleic Acids Res. 24, 375 (1996).CrossRefGoogle Scholar
  35. J.G. Spencer, Sensor and Actuator A 21–23, 203 (1990).Google Scholar
  36. K. Sun, A. Yamaguchi, Y. Ishida, S. Matsuo, H. Misawa, and H Sensors, Actuators B 84, 283 (2002).CrossRefGoogle Scholar
  37. T. Taniguchi, T. Torii, and T. Higuchi, Lab Chip l2, 19 (2002).CrossRefGoogle Scholar
  38. A. Torkkeli, J. Saarilahti, A. Haara, H. Harma, T. Soukka, and P. Tolonen, Proceeding of the 14th IEEE Conference MEMS (Interlaken, Switzerland, 2001), p. 475.Google Scholar
  39. M.A. Unger, H.P. Chou, T. Thorsen, A. Scherer, and S.R. Quake, Science 288, 113 (2000).CrossRefGoogle Scholar
  40. H.J.J. Verheijen and M.W.J. Prins, Langmuir 15, 6616 (1999).CrossRefGoogle Scholar
  41. W.J.J. Welters and L.G.J. Fokkink, Langmuir 14, 1535 (1998).CrossRefGoogle Scholar
  42. J. West, B. Karamata, B. Lillis, J.P. Gleeson, J. Alderman, J.K. Collins, W. Lane, A. Mathewson, and H. Berney, Lab Chip 2, 224 (2002).MATHCrossRefGoogle Scholar
  43. A.T. Woolley, D. Hadley, P. Landre, A.J. deMello, R. Mathies, and M.A. Northrup, Anal. Chem. 69, 4081 (1996).CrossRefGoogle Scholar
  44. T. Yasuda, K. Suzuki, and I. Shimoyama, The 7th International Conference on Miniaturized Chemical and Biochemical Analysis Systems (Squaw Valley, California, USA, 2003), p. 1129.Google Scholar
  45. D.S. Yoon, Y.S. Lee, H.J. Cho, S.W. Sung, K.W. Oh, J.H. Cha, and G.B. Lim, J. Micromech, Microeng 12, 813 (2002).CrossRefGoogle Scholar
  46. Q.T. Zhang, W.H. Wang, H.S. Zhang, and Y.L. Wang, Sensors Actuators B 82, 75 (2002).CrossRefGoogle Scholar
  47. Z. Zhao, D.F. Cui, and L. Wang, Int. J. Nonlinear Sci. Numer Simul. 3, 219 (2002).MATHGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Yi-Hsien Chang
    • 1
  • Gwo-Bin Lee
    • 1
  • Fu-Chun Huang
    • 1
  • Yi-Yu Chen
    • 1
  • Jr-Lung Lin
    • 1
  1. 1.Department of Engineering ScienceNational Cheng Kung UniversityTainanTaiwan

Personalised recommendations