Biomedical Microdevices

, Volume 8, Issue 2, pp 109–118 | Cite as

A parallel-gradient microfluidic chamber for quantitative analysis of breast cancer cell chemotaxis

  • Wajeeh Saadi
  • Shur-Jen Wang
  • Francis Lin
  • Noo Li Jeon


Growth factor-induced chemotaxis of cancer cells is believed to play a critical role in metastasis, directing the spread of cancer from the primary tumor to secondary sites in the body. Understanding the mechanistic and quantitative behavior of cancer cell migration in growth factor gradients would greatly help in future treatment of metastatic cancers. Using a novel microfluidic chemotaxis chamber capable of simultaneously generating multiple growth factor gradients, we examined the migration of the human metastatic breast cancer cell line MDA-MB-231 in various conditions. First, we quantified and compared the migration in two gradients of epidermal growth factor (EGF) spanning different concentrations: 0–50 ng/ml and 0.1–6 ng/ml. Cells showed a stronger response in the 0–50 ng/ml gradient. However, the fact that even a shallow gradient of EGF can induce chemotaxis, and that EGF can direct migration over a large dynamic range of gradients, confirms the potency of EGF as a chemoattractant. Second, we investigated the effect of antibody against the EGF receptor (EGFR) on MDA-MB-231 chemotaxis. Quantitative analysis indicated that anti-EGFR antibody impaired both motility and directional orientation (CI = 0.03, speed = 0.71 μm/min), indicating that cell motility was induced by the activation of EGFR. The ability to compare, in terms of quantitative parameters, the effects of different pharmaceutical inhibitors, as well as subtle differences in experimental conditions, will aid in our understanding of mechanisms that drive metastasis. The microfluidic chamber described in this work will provide a platform for cell-based assays that can be used to compare the effectiveness of different pharmaceutical compounds targeting cell migration and metastasis.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. M. Bailly, L. Yan, G.M. Whitesides, J.S. Condeelis and J.E. Segall, Experimental Cell Research 241, 285–299 (1998).CrossRefGoogle Scholar
  2. C.G. Bredin, Z. Liu, D. Hauzenberger and J. Klominek, Int J Cancer 82, 338–45 (1999).CrossRefGoogle Scholar
  3. A.F. Chambers, A.C. Groom and I.C. MacDonald, Nat Rev Cancer 2, 563–72 (2002).CrossRefGoogle Scholar
  4. F. Ciardiello and G. Tortora, Clin Cancer Res 7, 2958–2970 (2001).Google Scholar
  5. J.S. Condeelis, J.B. Wyckoff, M. Bailly, R. Pestell, D. Lawrence, J. Backer and J.E. Segall, Semin Cancer Biol 11, 119–8 (2001).CrossRefGoogle Scholar
  6. S.K.W. Dertinger, D.T. Chiu, N.L. Jeon and G.M. Whitesides, Anal Chem 73, 1240–1246 (2001).CrossRefGoogle Scholar
  7. S. Dluz, S. Higashiyama, D. Damm, J. Abraham and M. Klagsbrun, J Biol Chem 268, 18330–18334 (1993).Google Scholar
  8. O.M. Fischer, S. Streit, S. Hart and A. Ullrich, Current Opinion in Chemical Biology 7, 490–495 (2003).CrossRefGoogle Scholar
  9. N.L. Jeon, H. Baskaran, S.K.W. Dertinger, G.M. Whitesides, L. Van De Water and M. Toner, Nat Biotechnol 20 826–830 (2002).Google Scholar
  10. N.L. Jeon, S.K.W. Dertinger, D.T. Chiu and G.M. Whitesides, Langmuir 16, 8311–8316 (2000).CrossRefGoogle Scholar
  11. J. Kassis, D.A. Lauffenburger, T. Turner and A. Wells, Seminars in Cancer Biology 11, 105–119 (2001).CrossRefGoogle Scholar
  12. N. Kume and M.J. Gimbrone, J Clin Invest 93, 907–11 (1994).CrossRefGoogle Scholar
  13. M.D. Levine, L.A. Liotta and M.L. Stracke, EXS 74, 157–179 (1995).Google Scholar
  14. F. Lin, W. Saadi, S.W. Rhee, S.-J. Wang, S. Mittal and N.L. Jeon, Lab Chip 4, DOI: 10.1039/b313600k (2004).Google Scholar
  15. G. Maheshwari, A. Wells, L.G. Griffith and D.A. Lauffenburger, Biophys J 76, 2814–23 (1999).CrossRefGoogle Scholar
  16. J. Mendelsohn, Endocr Relat Cancer 8, 3–9 (2001).CrossRefGoogle Scholar
  17. J. Mendelsohn and J. Baselga, Oncogene 19, 6550–65 (2000).CrossRefGoogle Scholar
  18. G. Peoples, S. Blotnick, K. Takahashi, M. Freeman, M. Klagsbrun and T. Eberlein, PNAS 92, 6547–6551 (1995).Google Scholar
  19. J.T. Price, T. Tiganis, A. Agarwal, D. Djakiew and E.W. Thompson, Cancer Research 59, 5475–5478 (1999).Google Scholar
  20. R. Radinsky, S. Risin, D. Fan, Z. Dong, D. Bielenberg, C. Bucana and I.J. Fidler, Clin Cancer Res 1, 19–31 (1995).Google Scholar
  21. P.S. Steeg, Nat Rev Cancer 3, 55–63 (2003).CrossRefGoogle Scholar
  22. H. Steven Wiley, S.Y. Shvartsman and D.A. Lauffenburger, Trends in Cell Biology 13, 43-50 (2003).CrossRefGoogle Scholar
  23. T. Turner, M.V. Epps-Fung, J. Kassis and A. Wells, Clin Cancer Res 3, 2275–82 (1997).Google Scholar
  24. S.-J. Wang, W. Saadi, F. Lin, C.M.-C. Nguyen and N.L. Jeon, Exp Cell Res 300, 180–189 (2004).CrossRefGoogle Scholar
  25. A. Wells, Adv Cancer Res 78, 31–101 (2000).CrossRefGoogle Scholar
  26. A. Wells, J. Kassis, J. Solava, T. Turner and D.A. Lauffenburger, Acta Oncol 41, 124–30 (2002).CrossRefGoogle Scholar
  27. G.M. Whitesides, E. Ostuni, S. Takayama, X. Jiang and D.E. Ingber, Annu Rev Biomed Eng 3, 335–73 (2001).CrossRefGoogle Scholar
  28. P.C. Wilkinson, Journal of Immunological Methods 216, 139–153 (1998).CrossRefGoogle Scholar
  29. J. Woodburn, Pharmacol Ther 82, 241–50 (1999).CrossRefGoogle Scholar
  30. J.B. Wyckoff, L. Insel, K. Khazaie, R.B. Lichtner, J.S. Condeelis and J.E. Segall, Experimental Cell Research 242, 100–109 (1998).CrossRefGoogle Scholar
  31. J.B. Wyckoff, J.G. Jones, J.S. Condeelis and J.E. Segall, Cancer Res 60, 2504–2511 (2000).Google Scholar
  32. J.B. Wyckoff, J.E. Segall and J.S. Condeelis, Cancer Res 60, 5401–4 (2000).Google Scholar
  33. X. Yang, J. Corvalan, P. Wang, C. Roy and C. Davis, J Leukoc Biol 66, 401–410 (1999).Google Scholar
  34. J.H. Zar, Biostatistical Analysis (Prentice-Hall, Inc, Upper Saddle River, New Jersey, (1996)Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Wajeeh Saadi
    • 1
  • Shur-Jen Wang
    • 1
  • Francis Lin
    • 1
    • 2
  • Noo Li Jeon
    • 1
  1. 1.Department of Biomedical EngineeringUniversity of California, IrvineIrvine
  2. 2.Department of Physics and AstronomyUniversity of California at IrvineIrvineU.S.A

Personalised recommendations