Advertisement

Biomedical Microdevices

, Volume 8, Issue 2, pp 99–107 | Cite as

A surface-modified sperm sorting device with long-term stability

  • Jason M. Wu
  • Yaokuang Chung
  • Kimberly J. Belford
  • Gary D. Smith
  • Shuichi Takayama
  • Joerg LahannEmail author
Article

Abstract

Microfluidic devices fabricated from poly (dime- thylsiloxane) (PDMS) offer the ability to improve our biological and medical capabilities. Although PDMS offers a range of intriguing benefits for biomedical applications, the intrinsically hydrophobic nature of PDMS may impede with the tremendous potential of these devices. Here, we describe a PDMS-based sperm sorting device, which has been surface-modified via graft-co-polymerization of poly(ethylene glycol) methyl ether methacrylate to create a moderately hydrophilic and non-fouling surface. This process involves the exposure of PDMS to UV/ozone, which activates the PDMS surface to bond to the substrate and, at the same time, initiates the graft-co-polymerization from the PDMS surface. In this study, we confirmed long-term stability of surface-modified PDMS for up to 56 days based on Fourier transformation infrared spectroscopy (FTIR), contact angle measurements, and protein adsorption studies. Moreover, the applicability of our method to PDMS-based sperm sorting devices was demonstrated by successfully sorting human sperm.

Keywords

Contact Angle Methacrylate PDMS Microfluidic Device Protein Adsorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Belder and M. Ludwig, Electrophoresis 24, 3595 (2003).CrossRefGoogle Scholar
  2. Y. Berdichevsky, J. Khandurina, A. Guttman, and Y.-H Lo, Sensors and Actuators 97, 402 (2004).CrossRefGoogle Scholar
  3. B.S. Cho, T.G. Schuster, X. Zhu, D. Chang, G.D. Smith, and S. Takayma, Anal Chem 75, 1671 (2003).CrossRefGoogle Scholar
  4. K. Efimenko, W.E. Wallace, J. Genzer, J. Colloid Interface Sci 254, 306 (2002).CrossRefGoogle Scholar
  5. V.-M Graubner, R. Jordan, O. Nuyken, B. Schnyder, T. Lippert, R. Kotz, and A. Wokaun, Macromolecules 37, 5936 (2004).CrossRefGoogle Scholar
  6. S. Hu, X. Ren, M. Bachman, C.E. Sims, G. P. Li, and N.L. Allbritton, Langmuir 20, 5569 (2004).CrossRefGoogle Scholar
  7. S. Hu, X. Ren, M. Bachman, C.E.Sims, G.P. Li, and N.L. Allbritton, Anal Chem 74, 4117 (2002).CrossRefGoogle Scholar
  8. B.J. Jeong, J.H. Lee, and H.B. Lee, J. Colloid Inerface Sci 178, 757 (1996).CrossRefGoogle Scholar
  9. J. Lahann, M. Balcells, H. Lu, T. Rodon, K.F. Jensen, and R. Langer, Analytical Chemistry 75, 2117 (2003).CrossRefGoogle Scholar
  10. J.M.K. Ng, I. Gitlin, A.D. Stroock, and G.M. Whitesides, Electrophoresis 23, 3461 (2002).CrossRefGoogle Scholar
  11. A. Olah, H. Hillborg, and G.J. Vancso, Applied Surface Science 239, 410 (2005).CrossRefGoogle Scholar
  12. S.K. Sia and G.M. Whitesides, Electrophoresis 24, 3563 (2003).CrossRefGoogle Scholar
  13. R.S. Suh, N. Phadke, D.A. Ohl, S. Takayma, and G.D. Smith, Human Reprod. Update 9, 451 (2003).CrossRefGoogle Scholar
  14. F. Zhang, E.T. Kang, K.G. Neoh, P. Wang, and K.L. Tan, Biomaterials 22, 1541 (2001).CrossRefGoogle Scholar
  15. X.P. Zou, E.T. Kang, and K.G. Neoh, Plasmas and Polymers 7, 151 (2002).CrossRefGoogle Scholar
  16. X.P. Zou, E.T. Kang, and K.G. Neoh, Surface and Coatings Technology 149, 119 (2002). http://www.jelight.com/uvo-ozone-cleaning.php http://rsb.info.nih.gov/ij/download.html

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Jason M. Wu
    • 1
  • Yaokuang Chung
    • 2
  • Kimberly J. Belford
    • 1
    • 2
  • Gary D. Smith
    • 3
    • 4
    • 5
  • Shuichi Takayama
    • 2
    • 6
  • Joerg Lahann
    • 1
    • 6
    • 7
    Email author
  1. 1.Department of Chemical EngineeringUniversity of MichiganAnn ArborUSA
  2. 2.Department of Biomedical EngineeringUniversity of MichiganAnn ArborUSA
  3. 3.Department of Obstetrics & GynecologyUniversity of MichiganAnn ArborUSA
  4. 4.Department of UrologyUniversity of MichiganAnn ArborUSA
  5. 5.Department of Molecular & Integrated PhysiologyUniversity of MichiganAnn ArborUSA
  6. 6.Department of Macromolecular Science and EngineeringUniversity of MichiganAnn ArborUSA
  7. 7.Department of Materials Science and EngineeringUniversity of MichiganAnn ArborUSA

Personalised recommendations